DOUBLE-SPIKE SOLUTIONS FOR A CRITICAL INHOMOGENEOUS ELLIPTIC PROBLEM IN DOMAINS WITH SMALL HOLES

SALOMÓN ALARCÓN

ABSTRACT. In this paper we construct solutions which develop two negative spikes as $\varepsilon \to 0^+$ for the problem $-\Delta u = |u|^{\frac{4}{N-2}}u + \varepsilon f(x)$ in Ω , u=0 on $\partial\Omega$, where $\Omega\subset\mathbb{R}^N$ is a bounded smooth domain exhibiting a small hole, with $f\geq 0,\ f\not\equiv 0$. This result extends Theorem 2 in [9] in the sense that no symmetry assumptions on the domain are required.

1. Introduction

This paper deals with the construction of solutions of the problem

(1.1)
$$\begin{cases} -\Delta u = |u|^{p-1}u + \varepsilon f(x) & \text{in } \Omega, \\ u = 0 & \text{on } \partial\Omega, \end{cases}$$

where Ω is a bounded smooth domain in \mathbb{R}^N , $N \geq 3$, which has a small hole, $p = \frac{N+2}{N-2}$ is the critical Sobolev exponent, f(x) is an inhomogeneous perturbation, $f \geq 0$, $f \not\equiv 0$ and $\varepsilon > 0$ is a small parameter.

perturbation, $f \geq 0$, $f \not\equiv 0$ and $\varepsilon > 0$ is a small parameter. In the case 1 , it is well-known that if <math>f = 0, the associated energy functional to problem (1.1) is even and satisfies the (PS) condition in $H_0^1(\Omega)$ which implies the existence of infinitely many nontrivial solutions by standard Ljusternik-Schnirelmann theory. Also known are many results on existence and multiplicity of sign-changing solutions for small and large inhomogeneous perturbation, see [2, 23, 5, 18, 19, 25]; whereas in [16] was proved that (1.1) does not admit any positive solution if $\varepsilon > 0$ is too large.

proved that (1.1) does not admit any positive solution if $\varepsilon > 0$ is too large. In the critical case, $p = \frac{N+2}{N-2}$, the embedding $H_0^1(\Omega) \subset L^{p+1}(\Omega)$ is continuous but not compact, so that the (PS) condition does not hold, and serious difficulties in facing the existence question arise. In fact, Pohozaev [17] proved that (1.1) has no solution if f = 0 and Ω is strictly star-shaped. In contrast, Brezis and Nirenberg [7] showed that this situation can be reverted introducing suitable additive perturbations. Rey [20] pointed out that the result in [7] implies that if $f \geq 0$, $f \neq 0$ and $f \in H^{-1}(\Omega)$, then at least two positive solutions exist for $\varepsilon > 0$ small enough. Moreover, in [20] was proven that if f > 0, $f \not\equiv 0$, is sufficiently regular, then at least $cat(\Omega) + 1$ positive solutions exist for $\varepsilon > 0$ sufficiently small, one of them converging uniformly to 0 while the others concentrate at some special points in Ω , depending on f and the regular part of Green's function of the Laplacian on Ω , as $\varepsilon \to 0$. In parallel to Rey's result in [20], but with a different approach, Tarantello [26] proved that (1.1) admits at least two solutions for $f \not\equiv 0$ satisfying $\|\varepsilon f\|_{H^{-1}(\Omega)} < C_N$, where C_N is an explicit constant; such solutions are positive if $f \geq 0$. The effect of the symmetries in further multiplicity of solutions has been considered in some works. Ali and Castro [1] proved that the existence result in [7] is optimal for positive solutions in a ball: if Ω is a ball and $f \equiv 1$, problem (1.1) have exactly two positive solutions for all $\varepsilon > 0$ small enough. More recently, Clapp, Kavian and Ruf [10] proved that if Ω is symmetric with respect to $0, 0 \notin \Omega$, and f is even, then at least $\operatorname{cat}(\Omega) + 2$ positive solutions exist provided that $\|\varepsilon f\|_{H^{-1}}$ is sufficiently small. The results in [7, 20, 26, 1, 10] deal with existence of positive solutions to problem (1.1), provided that $f \geq 0$ and $f \neq 0$, where $\varepsilon > 0$ is a small parameter.

Concerning solutions which are not necessarily positive, Clapp, del Pino and Musso [9] showed existence of solutions of (1.1) under certain symmetry assumptions in the domain Ω and the function f. Such solutions develop k negative spikes, for any $k \geq k_0(\Omega)$ where $k_0(\Omega)$ is a sufficiently large number depending of Ω .

In this paper we leave aside any symmetry assumptions on the domain Ω and the perturbation f, and we find solutions to problem (1.1) developing a negative double-spike shape. Besides, we give precise information about the asymptotic profile of the blow-up of these solutions as $\varepsilon \to 0$ and we indicate a clearly delimited region where the spikes are formed.

More precisely, our setting in problem (1.1) is as follows: let us consider the domain

(1.2)
$$\Omega = \mathcal{D} \setminus \overline{B(P,\mu)},$$

where \mathcal{D} is a bounded smooth domain in \mathbb{R}^N , $N \geq 3$, $P \in \mathcal{D}$, and $\mu > 0$ is a small number. Let us consider $f \in C^{0,\gamma}(\overline{\Omega})$, for some $0 < \gamma < 1$, such that $\inf_{x \in \Omega} f(x) > 0$ and, by simplicity, we fix P = 0. Then our main result is

Theorem 1.1. There exists a constant $\mu_0 = \mu_0(f, \mathcal{D}) > 0$, such that for each $0 < \mu < \mu_0$ fixed, there exists a number $\varepsilon_0 > 0$ and a family of solutions u_{ε} of (1.1), for $0 < \varepsilon = \varepsilon_n < \varepsilon_0$, with the following property: u_{ε} has exactly a pair of local minimum points $(\xi_1^{\varepsilon}, \xi_2^{\varepsilon}) \in \Omega^2$ with $k_*\mu < |\xi_i^{\varepsilon}| < k^*\mu$, i = 1, 2, for certain constants k_*, k^* independent of μ , and such that for each small $\delta > 0$.

$$\inf_{\{|x-\xi_i^\varepsilon|>\delta,\ i=1,2\}}u_\varepsilon(x)\to 0\quad and\quad \inf_{\{|x-\xi_i^\varepsilon|<\delta\}}u_\varepsilon(x)\to -\infty,\quad i=1,2$$
 as $\varepsilon\to 0$.

Indeed we will find that u_{ε} is a nontrivial solution of (1.1) of the form

$$u_{\varepsilon}(x) = -\alpha_N \sum_{i=1}^{2} \left\{ \frac{\varepsilon^{\frac{2}{N-2}} \lambda_{i\varepsilon}}{\varepsilon^{\frac{4}{N-2}} \lambda_{i\varepsilon}^{2} + |x - \xi_{i}^{\varepsilon}|^{2}} \right\}^{\frac{N-2}{2}} + \varepsilon^{-1} \hat{\phi}(x) + \theta_{\varepsilon}(x),$$

where $\theta_{\varepsilon}(x) \to 0$ uniformly as $\varepsilon \to 0$, $\hat{\phi}$ is the unique solution of the problem

$$\begin{cases} -\Delta \hat{\phi}(x) = \varepsilon^2 f(x) & \text{in } \Omega, \\ \hat{\phi} = 0 & \text{on } \partial \Omega, \end{cases}$$

 $\alpha_N = (N(N-2))^{\frac{N-2}{4}}$ and the points $\xi_i^{\varepsilon} \to \xi_i$, up to subsequences, where (ξ_1, ξ_2) is a critical point of the functional

$$\varPhi(x,y) = \frac{1}{2} \left\{ \frac{H(x,x)w^2(y) + 2G(x,y)w(x)w(y) + H(y,y)w^2(x)}{G^2(x,y) - H(x,x)H(y,y)} \right\}$$

defined in the region $\{(x,y) \in \Omega^2 : G(x,y) - H^{\frac{1}{2}}(x,x)H^{\frac{1}{2}}(y,y) > 0, x \neq y\}$. Here G and H are, respectively, the Green's function of the Laplacian on Ω and its regular part, and w is the unique solution of the problem

$$\begin{cases}
-\Delta w = f & \text{in } \Omega, \\
w = 0 & \text{on } \partial\Omega.
\end{cases}$$

Besides, one can identify the limits λ_i of $\lambda_{i\varepsilon}$ as

$$\lambda_i = \left(a_N^{-1} \frac{H(\xi_j, \xi_j) w(\xi_i) + G(\xi_i, \xi_j) w(\xi_j)}{G^2(\xi_i, \xi_j) - H(\xi_i, \xi_i) H(\xi_j, \xi_j)}\right)^{\frac{2}{N-2}}, i \neq j, i, j = 1, 2,$$

where a_N is an explicit constant, and consider the constants k_*, k^* as follows: k_* is the unique solution in $]1, +\infty[$ of the equation

$$\frac{2^{2-N}}{s^{N-2}} = \frac{(s^2+1)^{N-2} + (s^2-1)^{N-2}}{(s^4-1)^{N-2}}$$

and, $K \leq k^* = k*(\Omega, f) < \infty$ where K is the unique solution in $]1, +\infty[$ of the equation

$$\frac{2^{1-N}}{s^N} = \frac{(s^2 - 1)^{N-1} + (s^2 + 1)^{N-1}}{(s^4 - 1)^{N-1}}.$$

In particular, if f is a constant and Ω is an annulus, then $k^* = K$.

On the other hand, it will be clear from the proof that the small excised domain does not need to be exactly a ball, and we consider this case just for notational simplicity.

The proof of Theorem 1.1 follows a Lyapunov-Schmidt reduction procedure, related with this problem. This method has been used for solving problem (1.1) in the critical case, see [20, 9] and in the slightly supercritical case with f = 0, see [12, 13], and also [21, 22] for related results.

In the next section we derive some basic estimates for the reduced energy associated to this problem. Sections 3-4 will be devoted to discuss the finite-dimensional reduction scheme which we use for the construction of solutions of (1.1). In Section 5 we introduce an auxiliary function which will be the key in our min-max scheme which we develop in Section 6 to establish finally the Theorem 1.1.

2. Basic estimates in the reduced energy

Let Ω be a bounded smooth domain in \mathbb{R}^N , $N \geq 3$, and let us consider the expanded domain

$$\Omega_{\varepsilon} = \varepsilon^{-\frac{2}{N-2}} \Omega, \quad \varepsilon > 0.$$

Doing the change of variable

$$v_{\varepsilon}(x') = -\varepsilon \, u(\varepsilon^{\frac{2}{N-2}}x'), \quad x' \in \Omega_{\varepsilon},$$

we note that u solves (1.1) if and only if v_{ε} solves

(2.1)
$$\begin{cases} \Delta v + |v|^{p-1}v = \varepsilon^{p+1}\tilde{f}(x') & \text{in } \Omega_{\varepsilon}, \\ v = 0 & \text{on } \partial\Omega_{\varepsilon}, \end{cases}$$

where $p = \frac{N+2}{N-2}$ and $\tilde{f}(x') = f(\varepsilon^{\frac{2}{N-2}}x')$. It is well-known that all positive solutions of equation $\Delta \vartheta + \vartheta^p = 0$ in \mathbb{R}^N are given by the functions

$$\bar{U}_{\lambda,\xi}(x) = \alpha_N \left(\frac{\lambda}{\lambda^2 + |x - \xi|^2}\right)^{\frac{N-2}{2}},$$

with $\lambda > 0$, $\xi \in \mathbb{R}^N$ and $\alpha_N = (N(N-2))^{\frac{N-2}{4}}$, see [3, 24, 7, 8]. Since Ω_{ε} is expanding to the whole \mathbb{R}^N as $\varepsilon \to 0$, and $\varepsilon^{p+1}\tilde{f}(x') \to 0$ uniformly as $\varepsilon \to 0$, it is reasonable to think that, for certain numbers $\lambda_1, \lambda_2 > 0$ and points $\xi_1, \xi_2 \in \Omega$, some solution v_{ε} of (2.1) becomes

$$v_{\varepsilon} \sim \bar{U}_{\lambda_1, \xi_1'} + \bar{U}_{\lambda_2, \xi_2'},$$

where $\xi_i' = \varepsilon^{-\frac{2}{N-2}} \xi_i \in \Omega_{\varepsilon}$, where from now on we use the letter ξ to denote a point in Ω and ξ' to denote a point in Ω_{ε} .

From [11], we know that a better approximation to v_{ε} should be obtained by using the orthogonal projections onto $H_0^1(\Omega_{\varepsilon})$ of the functions $\bar{U}_{\lambda,\xi'}$, denoted by $U_{\lambda,\xi'}$, namely the unique solution of the problem

$$\begin{cases} -\Delta U_{\lambda,\xi'} = \bar{U}_{\lambda,\xi'}^p & \text{in } \Omega_{\varepsilon}, \\ U_{\lambda,\xi'} = 0 & \text{on } \partial \Omega_{\varepsilon}. \end{cases}$$

In other words, $U_{\lambda,\xi'} = \bar{U}_{\lambda,\xi'} - \bar{v}_{\lambda,\xi'}$, where $\bar{v}_{\lambda,\xi'}$ solves

$$\begin{cases} -\Delta \bar{v}_{\lambda,\xi'} = 0 & \text{in } \Omega_{\varepsilon}, \\ \bar{v}_{\lambda,\xi'} = \bar{U}_{\lambda,\xi'} & \text{on } \partial \Omega_{\varepsilon}. \end{cases}$$

Hence, if we consider $\bar{U} = \bar{U}_{1.0}$, we obtain

(2.2)
$$\bar{v}_{\lambda,\xi'}(x') = \varepsilon^2 \lambda^{\frac{N-2}{2}} H(\varepsilon^{\frac{2}{N-2}} x', \xi) \int_{\mathbb{R}^N} \bar{U}^p + o(\varepsilon^2)$$

and, away from $x' = \xi'$,

(2.3)
$$U_{\lambda,\xi'}(x') = \varepsilon^2 \lambda^{\frac{N-2}{2}} G(\varepsilon^{\frac{2}{N-2}} x', \xi) \int_{\mathbb{R}^N} \bar{U}^p + o(\varepsilon^2)$$

uniformly for x' on each compact subset of Ω_{ε} , where G and H are, respectively, the Green's function of the Laplacian with the Dirichlet boundary condition on Ω and its regular part. Now, to simplify notation, we consider the following function

$$V(x') = U_1(x') + U_2(x'), \quad x' \in \Omega_{\varepsilon},$$

where $U_i = U_{\lambda_i, \xi_i'}$, i = 1, 2, and we put $\vec{\xi} = (\xi_1, \xi_2) \in \Omega^2$ and $\vec{\lambda} = (\lambda_1, \lambda_2) \in \mathbb{R}^2_+$. Then, we look for solutions of the problem (2.1) of the form

(2.4)
$$v(x') = V(x') + \tilde{\eta}(x'), \quad x' \in \Omega_{\varepsilon},$$

which for suitable points ξ and scalars λ will have the remainder term $\tilde{\eta}$ of small order all over Ω_{ε} . Since solutions of (2.1) correspond to stationary points of its associated energy functional J_{ε} defined by

(2.5)
$$J_{\varepsilon}(v) = \frac{1}{2} \int_{\Omega_{\varepsilon}} |\nabla v|^2 - \frac{1}{p+1} \int_{\Omega_{\varepsilon}} |v|^{p+1} + \varepsilon^{p+1} \int_{\Omega_{\varepsilon}} \tilde{f}v,$$

we have that if a solution of the form (2.4) exists, then we should have $J_{\varepsilon}(v) \sim J_{\varepsilon}(V)$ and the corresponding points $(\vec{\xi}, \vec{\lambda})$ in the definition of V also should be "approximately stationary" for the finite-dimensional functional

 $(\vec{\xi}, \vec{\lambda}) \mapsto J_{\varepsilon}(V)$. Thus, our first goal is to estimate $J_{\varepsilon}(V)$. In order to establish the expansion, we consider the function w which corresponds to the unique solution in $C^{0,\gamma}(\Omega)$ of the problem

(2.6)
$$\begin{cases} -\Delta w = f & \text{in } \Omega, \\ w = 0 & \text{on } \partial\Omega, \end{cases}$$

and we make the following choice of the points and the parameters: we fix $\delta > 0$ and we relabel the parameters λ_i 's as

$$\lambda_i = (a_N^{-1} \Lambda_i)^{\frac{2}{N-2}}, \quad i = 1, 2,$$

where $a_N = \int_{\mathbb{R}^N} \bar{U}^p$ and $\Lambda_i \in]\delta, \delta^{-1}[$, for i = 1, 2. We also define the set

(2.7)
$$\mathcal{M}_{\delta} = \{ (\vec{\xi}, \vec{\Lambda}) : |\xi_1 - \xi_2| > \delta, \operatorname{dist}(\xi_i, \partial \Omega) > \delta; i = 1, 2 \},$$

where
$$\vec{\xi} = (\xi_1, \xi_2) \in \Omega^2$$
 and $\vec{\Lambda} = (\Lambda_1, \Lambda_2) \in]\delta, \delta^{-1}[^2.$

Lemma 2.1. Let $\delta > 0$ given. The following expansion holds

$$J_{\varepsilon}(V) = 2C_N + \varepsilon^2 \Phi(\vec{\xi}, \vec{\Lambda}) + o(\varepsilon^2)$$

uniformly in the C^1 -sense, with respect to $(\vec{\xi}, \vec{\Lambda})$ in \mathcal{M}_{δ} . Here

(2.8)
$$C_N = \frac{1}{2} \int_{\mathbb{R}^N} |\nabla \bar{U}|^2 - \frac{1}{p+1} \int_{\mathbb{R}^N} \bar{U}^{p+1}$$

and the function Φ is defined by

(2.9)
$$\Phi(\vec{\xi}, \vec{\Lambda}) = \frac{1}{2} \left\{ \sum_{i=1}^{2} \Lambda_i^2 H(\xi_i, \xi_i) - 2\Lambda_1 \Lambda_2 G(\xi_1, \xi_2) \right\} + \sum_{i=1}^{2} \Lambda_i w(\xi_i).$$

The proof of the previous lemma is based in (2.2), (2.3) and some estimates established in [4], and follows the general lineaments used to prove Lemma 3.2 of [12] and Proposition 1 of [9], therefore is omitted.

3. The finite-dimensional reduction

We first introduce some notation to be used in what follows. For functions u, v defined in Ω_{ε} we set

$$\langle u, v \rangle = \int_{\Omega_{\varepsilon}} uv.$$

Let us fix a small number $\delta>0$ and consider points $(\vec{\xi'},\vec{\Lambda})$ in

$$(3.1) \quad \mathcal{M}_{\delta}^{\varepsilon} = \left\{ (\vec{\xi'}, \vec{\Lambda}) \in \Omega_{\varepsilon}^{2} \times]\delta, \, \delta^{-1}[^{2}: |\xi'_{1} - \xi'_{2}| > \delta_{\varepsilon}, \, \operatorname{dist}(\xi'_{i}, \partial \Omega_{\varepsilon}) > \delta_{\varepsilon}; \, i = 1, 2 \right\},\,$$

where $\delta_{\varepsilon} = \delta \varepsilon^{-\frac{2}{N-2}}$, $\vec{\xi'} = (\xi'_1, \xi'_2)$ and $\vec{\Lambda} = (\Lambda_1, \Lambda_2)$. Since all solutions ϑ of the problem $\Delta \vartheta + p \bar{U}_{\Lambda,0}^{p-1} \vartheta = 0$ in \mathbb{R}^N which satisfy $|\vartheta(x)| < C|x|^{2-N}$ belong to span $\left\{ \frac{\partial \bar{U}_{\Lambda,0}}{\partial x_j}, \frac{\partial \bar{U}_{\Lambda,0}}{\partial \Lambda} \right\}_{j=1,\dots,N+1}$, see [8], it is convenient to consider, for i=1,2, the following functions:

$$\bar{Z}_{ij}(x') = \frac{\partial \bar{U}_i}{\partial \xi'_{ij}}(x'), \ j = 1, \dots, N, \quad \bar{Z}_{i(N+1)}(x') = \frac{\partial \bar{U}_i}{\partial \Lambda_i}(x'),$$

and their respective $H_0^1(\Omega_{\varepsilon})$ -projections Z_{ij} , namely the unique solutions of

$$\left\{ \begin{array}{ll} \Delta Z_{ij} = \Delta \bar{Z}_{ij} & \text{ in } \Omega_{\varepsilon}, \\ Z_{ij} = 0 & \text{ on } \partial \Omega_{\varepsilon}. \end{array} \right.$$

In order to simplify notation, we will denote

$$V = U_1 + U_2$$
 and $\bar{V} = \bar{U}_1 + \bar{U}_2$.

We start studying a linear problem which is the basis for the reduction of (2.1): given $h \in L^{\infty}(\overline{\Omega}_{\varepsilon})$, find a function η and constants c_{ij} such that

(3.2)
$$\begin{cases} \Delta \eta + p|V|^{p-1}\eta = h + \sum_{i,j} c_{ij} U_i^{p-1} Z_{ij} & \text{in } \Omega_{\varepsilon}, \\ \eta = 0 & \text{on } \partial \Omega_{\varepsilon}, \\ \langle \eta, U_i^{p-1} Z_{ij} \rangle = 0 & \forall i, j. \end{cases}$$

We want to prove that this problem is uniquely solvable with uniform bounds in certain appropriate norms. In other words, we want study the linear operator L_{ε} associated to (3.2), namely

(3.3)
$$L_{\varepsilon}(\eta) = \Delta \eta + p|V|^{p-1}\eta,$$

under the previous orthogonality conditions. In order to this goal, we introduce the following L^{∞} -norms with weight. Let $\omega_i = \left(1 + |x' - \xi_i'|^2\right)^{-\frac{N-2}{2}}$ be, i = 1, 2; for a function θ defined in Ω_{ε} , we consider the norms

$$\|\theta\|_* = \|(\omega_1 + \omega_2)^{-\sigma} \theta(x')\|_{\infty} + \|(\omega_1 + \omega_2)^{-\sigma - 1} \nabla \theta(x')\|_{\infty}$$

where $\sigma = \frac{1}{2}$ if $3 \le N \le 6$, $\sigma = \frac{2}{N-2}$ if $N \ge 7$, and

$$\|\theta\|_{**} = \|(\omega_1 + \omega_2)^{-\varsigma} \theta(x')\|_{\infty},$$

where $\varsigma = \frac{p}{2}$ if $3 \leq N \leq 6$, $\varsigma = \frac{4}{N-2}$ if $N \geq 7$. These norms are similar to those defined in [9] for $N \geq 7$, but for $3 \leq N \leq 6$ we have modified them, something apparently necessary in that case, since $p \geq 2$. Now, we study the invertibility of the linear operator L_{ε} defined in (3.3). Hence, also is important to understand its differentiability in the variables $(\vec{\xi'}, \vec{\Lambda}) \in \mathcal{M}_{\varepsilon}^{\varepsilon}$.

Proposition 3.1. Assume that $(\vec{\xi'}, \vec{\Lambda}) \in \mathcal{M}^{\varepsilon}_{\delta}$. Then there exist $\varepsilon_0 > 0$ and C > 0, such that for all $0 < \varepsilon < \varepsilon_0$ and for all $h \in C^{\alpha}(\overline{\Omega}_{\varepsilon})$, the problem (3.2) admits an unique solution $\eta \equiv M_{\varepsilon}(h)$. Moreover, the map $(\vec{\xi'}, \vec{\Lambda}, h) \mapsto \eta \equiv M_{\varepsilon}(h)$ is of class C^1 and satisfies

$$\|\eta\|_* \le C\|h\|_{**}$$
 and $\|\nabla_{(\vec{\xi'},\vec{\Lambda})} \eta\|_* \le C\|h\|_{**}$.

The proof of this proposition follows from a slight variation of the arguments in the proof of Propositions 4.1 and 4.2 in [12] with the necessary modifications in [14] so that we omit it. In what follows, C represents a generic positive constant which is independent of ε and of the particular points $(\vec{\xi'}, \vec{\Lambda}) \in \mathcal{M}^{\varepsilon}_{\delta}$.

Now, we are ready to begin the finite-dimensional reduction. We want to solve the following nonlinear problem: find a function $\tilde{\eta}$ such that for certain constants c_{ij} , i = 1, 2, j = 1, ..., N + 1, one has

(3.4)
$$\begin{cases} \Delta(V+\tilde{\eta}) + |V+\tilde{\eta}|^{p-1}(V+\tilde{\eta}) - \varepsilon^{p+1}\tilde{f} = \sum_{i,j} c_{ij} U_i^{p-1} Z_{ij} & \text{in } \Omega_{\varepsilon}, \\ \tilde{\eta} = 0 & \text{on } \partial\Omega_{\varepsilon}, \\ \langle \tilde{\eta}, U_i^{p-1} Z_{ij} \rangle = -\langle \phi, U_i^{p-1} Z_{ij} \rangle & \forall i, j, \end{cases}$$

where ϕ solves the problem

(3.5)
$$\begin{cases} -\Delta \phi = \varepsilon^{p+1} \tilde{f} & \text{in } \Omega_{\varepsilon}, \\ \phi = 0 & \text{on } \partial \Omega_{\varepsilon}. \end{cases}$$

Note that $V + \tilde{\eta}$ is a solution of (2.1) if the scalars c_{ij} in (3.4) are all zero. Also, we note that the partial differential equation in (3.4) is equivalent in Ω_{ε} to:

$$\Delta \eta + p|V|^{p-1}\eta = -N_{\varepsilon}(\eta) - R_{\varepsilon} + \sum_{i,j} c_{ij}U_i^{p-1},$$

where $\eta = \tilde{\eta} - \phi$,

$$(3.6) N_{\varepsilon}(\eta) = |V + \eta - \phi|^{p-1} (V + \eta - \phi)_{+} - |V|^{p-1} V - p|V|^{p-1} (\eta - \phi)$$

and

(3.7)
$$R_{\varepsilon} = |V|^{p-1}V - \bar{U}_1^p - \bar{U}_2^p - p|V|^{p-1}\phi.$$

A first step to solve (3.4) consists of dealing with the following nonlinear problem: find a function φ such that for certain constants c_{ij} , i = 1, 2, j = 1, ..., N + 1, solves

(3.8)
$$\begin{cases} \Delta(V+\tilde{\eta}) + |V+\tilde{\eta}|^{p-1}(V+\tilde{\eta})_{+} - \varepsilon^{p+1}\tilde{f} = \sum_{i,j} c_{ij} U_{i}^{p-1} Z_{ij} & \text{in } \Omega_{\varepsilon}, \\ \varphi = 0 & \text{on } \partial\Omega_{\varepsilon}, \\ \langle \varphi, U_{i}^{p-1} Z_{ij} \rangle = 0 & \forall i, j, \end{cases}$$

where $\tilde{\eta} = \psi + \varphi - \phi$, with ϕ satisfying (3.5), and the function ψ is chosen as

$$(3.9) \psi = -M_{\varepsilon}(R_{\varepsilon})$$

where M_{ε} is defined as in Proposition 3.1 and R_{ε} is given by (3.7). Actually, it is easy to check that for points $(\vec{\xi'}, \vec{\Lambda}) \in \mathcal{M}^{\varepsilon}_{\delta}$ one has

$$\|\psi\|_* \le C\varepsilon^2$$
.

Now, in (3.8) we rewrite the equation of our interest as

$$\Delta \varphi + p|V|^{p-1}\varphi = -N_{\varepsilon}(\eta) - (\Delta \psi + p|V|^{p-1}\psi + R_{\varepsilon}) + \sum_{i,j} c_{ij}U_i^{p-1}Z_{ij}$$
 where $\eta = \psi + \varphi$.

Lemma 3.2. Assume that $(\vec{\xi'}, \vec{\Lambda}) \in \mathcal{M}^{\varepsilon}_{\delta}$. Then there exists C > 0 such that for all $\varepsilon > 0$ small enough and $\|\varphi\|_* \leq \frac{1}{4}$ one has

$$||N_{\varepsilon}(\psi+\varphi)||_{**} \leq \begin{cases} C(||\varphi||_{*}^{2} + \varepsilon ||\varphi||_{*} + \varepsilon^{p+1}) & \text{if } 3 \leq N \leq 6, \\ C(\varepsilon^{2(p-2)} ||\varphi||_{*}^{2} + \varepsilon^{p^{2} - 3p + 2} ||\varphi||_{*}^{p} + \varepsilon^{p^{2} - p + 2}) & \text{if } N \geq 7. \end{cases}$$

Proof. Note that $\|\phi\|_* \leq C\varepsilon^p$ if $3 \leq N \leq 6$, $\|\phi\|_* \leq C\varepsilon^2$ if $N \geq 7$ and $\|\psi\|_* \leq C\varepsilon^2$. Since $\|\psi + \varphi\|_* \leq \|\psi\|_* + \|\varphi\|_*$, then for $\eta = \psi + \varphi$ we have that $\|\eta\|_* < 1$. Also we note that

(3.10)
$$N_{\varepsilon}(\eta) = C|V + \bar{t}(\eta - \phi)|^{p-2}(\eta - \phi)^2,$$

with $\bar{t} \in]0,1[$. Hence, if $3 \le N \le 6$ then

$$|(\omega_1 + \omega_2)^{-\frac{p}{2}} N_{\varepsilon}(\eta)| \le C(\omega_1 + \omega_2)^{\frac{p}{2} - 1} ||\eta - \phi||_*^2 \le C||\eta - \phi||_*^2.$$

On the other hand, for $N \geq 7$, if $|\eta| \leq \frac{1}{2}(\omega_1 + \omega_2)$ we use again (3.10) and we obtain

$$|(\omega_1 + \omega_2)^{-\frac{4}{N-2}} N_{\varepsilon}(\eta)| \le C(\omega_1 + \omega_2)^{\frac{6-N}{n-2}} \|\eta - \phi\|_*^2 \le C\varepsilon^{\frac{6-N}{N-2}} \|\eta - \phi\|_*^2.$$

In another case we obtain directly from (3.6) that

$$|(\omega_1 + \omega_2)^{-\frac{4}{N-2}} N_{\varepsilon}(\eta)| \le C|(\omega_1 + \omega_2)^{-\frac{4}{N-2}} (\eta - \phi)^p| \le C \varepsilon^{\frac{6-N}{N-2} \cdot \frac{2}{N-2}} ||\eta - \phi||_*^p$$

Combining previous estimates the result follows.

Now, we deal with the following problem

(3.11)
$$\begin{cases} \Delta \varphi + pV^{p-1}\varphi = -N_{\varepsilon}(\eta) + \sum_{i,j} c_{ij} U_i^{p-1} Z_{ij} & \text{in } \Omega_{\varepsilon}, \\ \varphi = 0 & \text{on } \partial \Omega_{\varepsilon}, \\ \langle \varphi, U_i^{p-1} Z_{ij} \rangle = 0 & \forall i, j, \end{cases}$$

where $\eta = \psi + \varphi$ and ψ is the function defined in (3.9).

Proposition 3.3. Assume that $(\vec{\xi'}, \vec{\Lambda}) \in \mathcal{M}^{\varepsilon}_{\delta}$. Then there exists C > 0, such that for all $\varepsilon > 0$ small enough there exists an unique solution $\varphi = \varphi(\vec{\xi'}, \vec{\Lambda})$ to problem (3.11). Moreover, the map $(\vec{\xi'}, \vec{\Lambda}) \mapsto \varphi(\vec{\xi'}, \vec{\Lambda})$ is of class C^1 for the $\|\cdot\|_*$ -norm and it satisfies

$$||\varphi||_* \leq C\varepsilon^2 \quad and \quad ||\nabla_{(\bar{\xi'},\vec{\Lambda})}\varphi||_* \leq C\varepsilon^2.$$

Proof. Let us set

$$\mathcal{F}_r = \{ \varphi \in H_0^1(\Omega_{\varepsilon}) : \|\varphi\|_* \le r\varepsilon^2 \},$$

with r > 0 a constant to be fixed later. We define the map $A_{\varepsilon} : \mathcal{F}_r \to H^1_0(\Omega_{\varepsilon})$ as

$$A_{\varepsilon}(\varphi) = -M_{\varepsilon}(N_{\varepsilon}(\psi + \varphi))$$

where M_{ε} is the operator defined in Proposition 3.1. Since $\psi = -M_{\varepsilon}(R_{\varepsilon})$, solving (3.11) is equivalent to finding a fixed point φ for A_{ε} . From Proposition 3.1 and Lemma 3.2, we deduce that if $\varphi \in \mathcal{F}_r$ and $\varepsilon > 0$ is small enough, then

$$||A_{\varepsilon}(\varphi)||_* \le r\varepsilon^2$$

for a suitable choice of r = r(N) which we consider fixed from now on. Note that for $\varphi_1, \varphi_2 \in \mathcal{F}_r$ we have from Lemma 3.2

$$||A_{\varepsilon}(\varphi_1) - A_{\varepsilon}(\varphi_2)||_* \le C||N_{\varepsilon}(\psi + \varphi_1) - N_{\varepsilon}(\psi + \varphi_2)||_{**} \le C\varepsilon^p ||\varphi_1 - \varphi_2||_*,$$

for all $N \geq 3$. It follows that, for $\varepsilon > 0$ small enough, the map A_{ε} is a contraction $\|\cdot\|_*$ in \mathcal{F}_r . Therefore, A_{ε} has a fixed point in \mathcal{F}_r .

Concerning differentiability properties, let us recall that $\eta = \psi + \varphi$ is defined by the relation

$$B(\vec{\xi'}, \vec{\Lambda}, \eta) \equiv \eta + M_{\varepsilon} (N_{\varepsilon}(\psi + \varphi)) = 0.$$

We see that

$$D_{\eta}B(\vec{\xi'},\vec{\Lambda},\eta)[\theta] = \theta + M_{\varepsilon}(\theta D_{\eta}N_{\varepsilon}(\psi + \varphi)) \equiv \theta + \tilde{M}(\theta),$$

and check

$$\|\tilde{M}(\theta)\|_* \le C\varepsilon \|\theta\|_*.$$

This implies that for ε small, the linear operator $D_{\eta}B(\vec{\xi'},\vec{\Lambda},\eta)$ is invertible in the space of the continuous functions in Ω_{ε} with bounded $\|\cdot\|_*$ -norm, with uniformly bounded inverse depending continuously on its parameters.

Now, let us consider the differentiability with respect to the $\vec{\xi}'$ variable and by simplicity we write $\frac{\partial}{\partial \xi'_{ij}} = \partial_{\xi'_{ij}}$. Then

$$\partial_{\xi_{ij}'}B(\vec{\xi'},\vec{\Lambda},\eta) = \partial_{\xi_{ij}'}M_{\varepsilon}(N_{\varepsilon}(\psi+\varphi)) + M_{\varepsilon}(\partial_{\xi_{ij}'}N_{\varepsilon}(\psi+\varphi)) + M_{\varepsilon}(D_{\eta}N_{\varepsilon}(\psi+\varphi)\partial_{\xi_{ij}'}\psi).$$

It is clear that all expressions which define to $\partial_{\xi'_{ij}} B(\vec{\xi'}, \vec{\Lambda}, \eta)$ depend continuously on their parameters. Applying the implicit function theorem we obtain that $\varphi(\vec{\xi'}, \vec{\Lambda})$ is a C^1 -function in L^{∞}_* . Besides, we get

$$\partial_{\xi_{ij}'}\varphi = - \big(D_{\eta} B(\vec{\xi'}, \vec{\Lambda}, \eta) \big)^{-1} \big(\partial_{\xi_{ij}'} B(\vec{\xi'}, \vec{\Lambda}, \eta) \big),$$

and using the first part of this proposition, the estimates in the previous lemmas, Proposition 3.1 and the fact that $(\vec{\xi}, \vec{\Lambda}) \in \mathcal{M}^{\varepsilon}_{\delta}$, we conclude

$$\|\partial_{\xi'_{ij}}\varphi\|_* \leq C(\|N_{\varepsilon}(\psi+\varphi)\|_{**} + \|\partial_{\xi'_{ij}}N_{\varepsilon}(\psi+\varphi)\|_{**} + \|D_{\eta}N_{\varepsilon}(\psi+\varphi)\partial_{\xi'_{ij}}\psi\|_{**} \leq C\varepsilon^2$$

Similarly, we can analyze differentiability of B with respect to $\vec{\Lambda}$. This finishes the proof. \blacksquare

4. The reduced functional

Now we are ready to solve the full problem. Let us consider $(\vec{\xi'}, \vec{\Lambda}) \in \mathcal{M}^{\varepsilon}_{\delta}$ whit $\mathcal{M}^{\varepsilon}_{\delta}$ defined by (3.1). All estimates obtained below will be uniform on these points. Let $\varphi = \varphi(\vec{\xi'}, \vec{\Lambda})$ be the unique solution, given by Proposition 3.3, of the problem (3.8) with $\tilde{\eta} = \psi + \varphi - \phi$, where φ solves (3.9) and ϕ solves (3.5). Note that if $\vec{\xi} = \varepsilon^{\frac{2}{N-2}} \vec{\xi'} \in \Omega^2$ and $\vec{\lambda} = (\lambda_1, \lambda_2) \in \mathbb{R}^2_+$ so that $c_{ij} = 0$ for all i, j, then a solution of (1.1) is

$$u(x) = -\varepsilon^{-1}v(\varepsilon^{-\frac{2}{N-2}}x), \qquad x \in \Omega,$$

where $v = V + \psi + \varphi(\vec{\xi'}, \vec{\Lambda}) - \phi$. Hence, u will be a critical point of

$$I_{\varepsilon}(u) = \frac{1}{2} \int_{\Omega} |\nabla u|^2 - \frac{1}{p+1} \int_{\Omega} |u|^{p+1} - \varepsilon \int_{\Omega} fu.$$

while v will be one of J_{ε} given by (2.5). Then it is convenient to consider the following functions defined in Ω :

$$\hat{U}_i(x) = \varepsilon^{-1} U_i(\varepsilon^{-\frac{2}{N-2}} x) = U_{\lambda_i^{\varepsilon}, \xi_i}(x), \qquad \qquad \hat{\psi}(x) = \varepsilon^{-1} \psi(\varepsilon^{-\frac{2}{N-2}} x),$$

$$\hat{\varphi}(\vec{\xi}, \vec{\Lambda})(x) = \varepsilon^{-1} \varphi(\vec{\xi'}, \vec{\Lambda})(\varepsilon^{-\frac{2}{N-2}} x) \quad \text{and} \quad \hat{\phi}(x) = \varepsilon^{-1} \phi(\varepsilon^{-\frac{2}{N-2}} x).$$

Note that $\hat{U}_i = U_{\lambda_{i\varepsilon},\xi_i}$ where $\lambda_{i\varepsilon} = (c_N \Lambda_i^2 \varepsilon)^{\frac{2}{N-2}} \in \mathbb{R}_+$ and $\vec{\xi} = \varepsilon^{\frac{2}{N-2}} \vec{\xi'}$, with $(\vec{\xi},\vec{\Lambda}) \in \mathcal{M}_{\delta}$ defined by (2.7). Now, let us put $\hat{U} = \hat{U}_1 + \hat{U}_2$. Consider now the functional

(4.1)
$$\mathcal{I}(\vec{\xi}, \vec{\Lambda}) \equiv I_{\varepsilon} (\hat{U} + \hat{\psi} + \hat{\varphi}(\vec{\xi}, \vec{\Lambda}) - \hat{\phi}).$$

It is easy to check that

$$\mathcal{I}(\vec{\xi}, \vec{\lambda}) = J_{\varepsilon} (V + \psi + \varphi(\vec{\xi'}, \vec{\Lambda}) - \phi).$$

Then, putting $\tilde{\eta} = \psi + \varphi(\vec{\xi'}, \vec{\Lambda}) - \phi$, one shows that $DJ_{\varepsilon}(V + \tilde{\eta})[\vartheta] = 0$ for all $\vartheta \in H_{\varepsilon}$, where $H_{\varepsilon} = \{\vartheta \in H_0^1(\Omega_{\varepsilon}) : \langle \vartheta, V_i^{p-1} Z_{ij} \rangle = 0 \ \forall i, j \}$. Also one has

$$\frac{\partial V}{\partial \xi'_{lk}} = Z_{lk} + o(1) \quad \forall l, k; \qquad \frac{\partial V}{\partial \Lambda_{l(N+1)}} = Z_{l(N+1)} + o(1) \quad \forall l,$$

with $o(1) \to 0$ in the $\|\cdot\|_*$ -norm as $\varepsilon \to 0$. Then from Proposition 3.3 we obtain the following basic result:

Lemma 4.1. The function $u = \hat{U} + \hat{\psi} + \hat{\varphi}(\vec{\xi}, \vec{\Lambda}) - \hat{\phi}$ is a solution of the problem (1.1) if only if $(\vec{\xi}, \vec{\Lambda})$ is a critical point of \mathcal{I} .

Next step is then to give an asymptotic estimate for $\mathcal{I}(\vec{\xi}, \vec{\Lambda})$. Put

(4.2)
$$\sigma_f = \int_{\Omega} f(x)w(x) dx,$$

where w is the solution of (2.6). Then

Proposition 4.2. The following expansion holds:

(4.3)
$$\mathcal{I}(\vec{\xi}, \vec{\Lambda}) = 2C_N + \varepsilon^2 \{ \Phi(\vec{\xi}, \vec{\Lambda}) + \sigma_f \} + o(\varepsilon^2) \theta(\vec{\xi}, \vec{\Lambda})$$

uniformly in the C^1 -sense with respect to $(\vec{\xi}, \vec{\Lambda}) \in \mathcal{M}_{\delta}$, where θ is a bounded uniformly function independently of $\varepsilon > 0$. Here C_N is the constant given by (2.8) and Φ is the function given by (2.9).

Proof. The first step to achieve our goal is to prove that

(4.4)
$$\mathcal{I}(\vec{\xi}, \vec{\Lambda}) - I_{\varepsilon}(\hat{V} + \hat{\psi} - \hat{\phi}) = o(\varepsilon^2)$$

and

(4.5)
$$\nabla_{(\vec{\xi},\vec{\Lambda})} \left(\mathcal{I}(\vec{\xi},\vec{\Lambda}) - I_{\varepsilon} (\hat{V} + \hat{\psi} - \hat{\phi}) \right) = o(\varepsilon^{2}).$$

Let us set $\vartheta = V + \psi - \phi$ and notice that

$$\mathcal{I}(\vec{\xi}, \vec{\Lambda}) - I_{\varepsilon}(\hat{V} + \hat{\psi} - \hat{\phi}) = -\int_{0}^{1} t \left(\int_{\Omega_{\varepsilon}} N_{\varepsilon}(\psi + \varphi) \varphi \right) dt + \int_{0}^{1} t \left(\int_{\Omega_{\varepsilon}} p(|V|^{p-1} - |\vartheta + t\varphi|^{p-1}) \varphi^{2} \right) dt.$$

Now, differentiating with respect to the $\vec{\xi}$ variable, we obtain

$$D_{\vec{\xi}} (\mathcal{I}(\vec{\xi}, \vec{\Lambda}) - I_{\varepsilon}(\hat{\vartheta})) = -\varepsilon^{-\frac{2}{N-2}} \int_{0}^{1} t \int_{\Omega_{\varepsilon}} p \nabla_{\vec{\xi'}} [|\vartheta + t\varphi|^{p-1} \varphi^{2} - |V|^{p-1} \varphi^{2}] dt$$
$$-\varepsilon^{-\frac{2}{N-2}} \int_{\Omega_{\varepsilon}} \nabla_{\vec{\xi'}} (N_{\varepsilon} (\psi + \varphi) \varphi).$$

Keeping in mind that $||N_{\varepsilon}(\psi+\varphi)||_*+||\varphi||_*+||\psi||_*+||\nabla_{\xi_i'}\varphi||_*+||\nabla_{\xi_1'}\psi||_* \leq O(\varepsilon^2)$, we get that (4.4) and (4.5) hold true.

A second step is to prove that

(4.6)
$$I_{\varepsilon}(\hat{V} + \hat{\psi} - \hat{\phi}) - I_{\varepsilon}(\hat{V} - \hat{\phi}) = o(\varepsilon^{2})$$

and

(4.7)
$$\nabla_{(\vec{\xi},\vec{\Lambda})} \left(I_{\varepsilon}(\hat{V} + \hat{\psi} - \hat{\phi}) - I_{\varepsilon}(\hat{V} - \hat{\phi}) \right) = o(\varepsilon^{2}).$$

Put $\eta = V - \phi$ and, by the fundamental calculus theorem, note that

$$(4.8) \quad I_{\varepsilon}(\hat{\eta} + \hat{\psi}) - I_{\varepsilon}(\hat{\eta}) = \int_{0}^{1} (1 - t) \left(\int_{\Omega_{\varepsilon}} p |\eta + t\psi|^{p-1} \psi^{2} - \int_{\Omega_{\varepsilon}} |\nabla \psi|^{2} \right) dt + \int_{\Omega_{\varepsilon}} (|V|^{p} - |\eta|^{p} - p|V|^{p-1} \phi) \psi + \int_{\Omega_{\varepsilon}} R_{\varepsilon} \psi.$$

Now, differentiating with respect to $\vec{\xi}$ variables, we obtain

$$\begin{split} D_{\vec{\xi}} \big(I_{\varepsilon} (\hat{\eta} + \hat{\psi}) - I_{\varepsilon} (\hat{\eta}) \big) &= \varepsilon^{-\frac{2}{N-2}} \int_{0}^{1} (1-t) \int_{\Omega_{\varepsilon}} \nabla_{\vec{\xi'}} \big(p | \eta + t \psi |^{p-1} \psi^{2} - |\nabla \psi|^{2} \big) dt \\ &+ \varepsilon^{-\frac{2}{N-2}} \int_{\Omega_{\varepsilon}} \nabla_{\vec{\xi'}} \big(|V|^{p} - |\eta|^{p} - p |V|^{p-1} \phi \big) \psi \\ &+ \varepsilon^{-\frac{2}{N-2}} \int_{\Omega_{\varepsilon}} \big(|V|^{p} - |\eta|^{p} - p |V|^{p-1} \phi \big) \nabla_{\vec{\xi'}} \psi \\ &+ \varepsilon^{-\frac{2}{N-2}} \int_{\Omega_{\varepsilon}} \nabla_{\vec{\xi'}} R_{\varepsilon} \psi + \varepsilon^{-\frac{2}{N-2}} \int_{\Omega_{\varepsilon}} R_{\varepsilon} \nabla_{\vec{\xi'}} \psi. \end{split}$$

Since $||R_{\varepsilon}||_{**} + ||\nabla_{\xi_i'}R_{\varepsilon}||_{**} + ||\phi||_{\infty} + ||\psi||_{*} + ||\nabla_{\xi_i'}\psi||_{*} \leq O(\varepsilon^2)$ and $||\phi||_{*} \leq O(\varepsilon^p)$ if $3 \leq N \leq 6$, $||\phi||_{*} \leq O(\varepsilon^2)$ if $N \geq 7$, one has that (4.6) and (4.7) hold.

Finally, only we need hold the following two estimates

$$(4.9) I_{\varepsilon}(\hat{V} - \hat{\phi}) - I_{\varepsilon}(\hat{V}) = \varepsilon^{2} \sigma_{f} + o(\varepsilon^{2}),$$

where σ_f is given by (4.2), and

$$(4.10) D_{(\vec{\xi},\vec{\Lambda})} (I_{\varepsilon}(\hat{V} - \hat{\phi}) - I_{\varepsilon}(\hat{V})) = o(\varepsilon^{2}).$$

Now, we have that

$$(4.11) I_{\varepsilon}(\hat{V} - \hat{\phi}) - I_{\varepsilon}(\hat{V}) = \int_{0}^{1} \left(\int_{\Omega_{\varepsilon}} |\nabla \phi|^{2} - \int_{\Omega_{\varepsilon}} p|V - t\phi|^{p-1} \phi^{2} \right) dt + \int_{\Omega_{\varepsilon}} \left(\bar{U}_{1}^{p} + \bar{U}_{2}^{p} - |V - t\phi|^{p} \right) \phi.$$

Note that

$$\int_0^1 t \int_{\Omega_{\varepsilon}} |\nabla \phi|^2 dt = \int_{\Omega_{\varepsilon}} |\nabla \phi|^2 = \varepsilon^{p+1} \int_{\Omega_{\varepsilon}} \tilde{f} \phi = \varepsilon^2 \int_{\Omega} f w = \varepsilon^2 \sigma_f,$$

and since $\|\phi\|_{\infty} \leq O(\varepsilon^{p+1})$, we have that

$$\left| \int_{\Omega_{\varepsilon}} p|V - t\phi|^{p-1}\phi^2 \right| \le C\varepsilon^4 \int_{\Omega_{\varepsilon}} (\omega_1 + \omega_2)^{p-1} \le o(\varepsilon^2).$$

On the other hand, it is not difficult to check that

$$\left|\int_{\Omega_{\varepsilon}}\!\!\left(\sum_{i=1}^2 \bar{U}_i^p \!\!-\!\!|V-t\phi|^p\right)\!\phi\right| = \left|\int_{\Omega_{\varepsilon}}\!\!R_{\varepsilon}\phi + \int_{\Omega_{\varepsilon}}\!\!\left(|V|^p \!\!-\! |V-t\phi|^p \!\!-\! p|V|^{p-1}\!\phi\right)\phi\right| \leq o(\varepsilon^2).$$

The above estimates hold (4.9). Now, from (4.11) we get

$$D_{\vec{\xi}}(I_{\varepsilon}(\hat{V} - \hat{\phi}) - I_{\varepsilon}(\hat{V})) = \varepsilon^{-\frac{2}{N-2}} \int_{0}^{1} t \int_{\Omega_{\varepsilon}} p|V - t\phi|^{p-2} \nabla_{\vec{\xi'}} V \phi^{2} dt + \varepsilon^{-\frac{2}{N-2}} \int_{\Omega_{\varepsilon}} \nabla_{\vec{\xi'}} (\bar{U}_{1}^{p} + \bar{U}_{2}^{p} - |V - t\phi|^{p}) \phi,$$

but since $\|\phi\|_{\infty} \leq O(\varepsilon^{p+1})$, it is easy to check that (4.10) is truth. Similarly we hold results for the differentiability with respect to $\vec{\Lambda}$.

Remark 4.3. Lemma 2.1 and previous proposition yield

(4.12)
$$\nabla_{(\vec{\xi},\vec{\Lambda})} \mathcal{I}(\vec{\xi},\vec{\Lambda}) = \varepsilon^2 \nabla_{(\vec{\xi},\vec{\Lambda})} \Phi(\vec{\xi},\vec{\Lambda}) + o(\varepsilon^2) \nabla_{(\vec{\xi},\vec{\Lambda})} \theta(\vec{\xi},\vec{\Lambda}),$$

uniformly with respect to $(\vec{\xi}, \vec{\Lambda}) \in \mathcal{M}_{\delta}$, where θ and $\nabla_{(\vec{\xi}, \vec{\Lambda})}\theta$ are bounded uniformly functions, independently of all $\varepsilon > 0$ small. \square

5. An auxiliary function on the exterior domain

In this section we consider the domain Ω defined in (1.2) with P=0, $\mu>0$ small and fixed and we assume that $f\in C^{0,\gamma}(\overline{\Omega})$, for some $0<\gamma<1$, with $\min_{x\in\Omega}f(x)=\alpha>0$. Let w be the unique solution in $C^{2,\gamma}(\overline{\Omega})$ of problem (2.6), then it is easy to check that $w_{\mu}(x)=\mu^{-2}w(\mu x)$ is the unique $C^{2,\gamma}(\overline{\mu^{-1}\Omega})$ solution of the problem

$$\begin{cases} -\Delta w_{\mu} = \hat{f} & \text{in} \quad \mu^{-1}\Omega \\ w_{\mu} = 0 & \text{on} \quad \partial(\mu^{-1}\Omega), \end{cases}$$

where $\hat{f}(x) = f(\mu x)$ for $x \in (\mu^{-1}\Omega)$.

Now, we consider the exterior domain

$$E = \mathbb{R}^N \setminus \overline{B(0,1)}$$

and we denote by G_E and H_E , respectively, the Green's function on E and its regular part. By convenience, in the set:

$$\mathbf{V} = \{(x,y) \in \mathbb{R}^N \times \mathbb{R}^N : G_E(x,y) - H_F^{\frac{1}{2}}(x,x)H_F^{\frac{1}{2}}(y,y) > 0\} \cap (\mu^{-1}\Omega)$$

we define the function:

$$\Phi_E(x,y) = \frac{1}{2} \left\{ \frac{H_E(x,x)w_\mu^2(y) + 2G_E(x,y)w_\mu(x)w_\mu(y) + H_E(y,y)w_\mu^2(x)}{G_E^2(x,y) - H_E(x,x)H_E(y,y)} \right\}.$$

Then, if x and y are variable vectors whose magnitudes remain constant and we differentiate Φ_E with respect to the angle θ formed between them, we obtain

$$\frac{\partial}{\partial \theta} \Phi_E(x, y) = F(x, y, \theta) \sin \theta$$

for $0 < \theta < \pi$. Since $F(x, y, \theta) > 0$ for all $\theta \in]0, \pi[$, $(x, y) \in \mathbf{V}$, we have that for given magnitudes |x| and |y|, Φ_E maximizes its value when $\theta = \pi$, is to say when x and y have opposite directions. In the rest of this section we assume that this is the situation.

5.1. A first step to the auxiliary function: a radial case. In this subsection we consider a fixed constant T > 0 and the domain

$$\Omega := \mathcal{A}_{\mu} = \{ x \in \mathbb{R}^N : 1 < |x| < \mu^{-1} \} \text{ and } f \equiv 1.$$

We write $R := R(\mu, T) = \mu^{-1}T$ so that $w_{\mu} \in C^{2,\gamma}(\overline{\mathcal{A}_{\mu}})$ is defined by

$$w_{\mu}(x) := W_{R}(x) = \frac{1}{2N} \left\{ \frac{R^{2} - 1}{R^{2-N} - 1} |x|^{2-N} - |x|^{2} + R^{2-N} \frac{1 - R^{N}}{R^{2-N} - 1} \right\}.$$

From the maximum principle we have that W_R is strictly positive in \mathcal{A}_{μ} . Besides, it achieves its maximum value in

$$x_{\mu}^* \in \mathbb{R}^N$$
 such that $|x_{\mu}^*| = R_{\mu}^* = \left(\frac{(N-2)R^{N-2}(R^2-1)}{2(R^{N-2}-1)}\right)^{\frac{1}{N}}$.

Note that $R_{\mu}^* \to +\infty$ as $\mu \to 0$. Now we consider an unitary vector **e** and we put $x = s\mathbf{e}, \ y = -t\mathbf{e}$ with s,t > 1. Then

$$\begin{split} 2\beta_N \varPhi_E(x,y) \; &:= \; \; 2\beta_N \varPhi_R(x,y) \\ \; &= \; \; 2\beta_N \tilde{\varPhi}_R(s,t) \\ \; &= \; \; \frac{\tilde{W}_R^2(t)}{(s^2-1)^{N-2}} + 2 \left\{ \frac{1}{(s+t)^{N-2}} - \frac{1}{(st+1)^{N-2}} \right\} \tilde{W}_R^2(s) \tilde{W}_R^2(t) + \frac{\tilde{W}_R^2(s)}{(t^2-1)^{N-2}} \\ \; & \left(\frac{1}{(s+t)^{N-2}} - \frac{1}{(st+1)^{N-2}} \right)^2 - \frac{1}{[(s^2-1)(t^2-1)]^{N-2}} , \end{split}$$

where $\tilde{W}_R(r) = W_R(r\mathbf{e})$, for 1 < r < R.

Remark 5.1. We define in $]1, +\infty[\times]1, +\infty[$ the following function:

$$\tilde{\Psi}(s,t) = \frac{1}{(s+t)^{N-2}} - \frac{1}{(st+1)^{N-2}} - \frac{1}{\left[(s^2-1)(t^2-1)\right]^{\frac{N-2}{2}}}.$$

From (5.1), it is easy to check that we can choose μ_0 small enough such that for all $0 < \mu < \mu_0$ there are $1 < k_* < K < R_{\mu_0}^*$ independent of μ , verifying $\tilde{\Psi}(k_*, k_*) = 0$, $\tilde{\Psi}(K, K) = \max_{(x,y) \in E} \tilde{\Psi}(|x|, |y|)$. Moreover, k_* is the unique solution in $|1, +\infty|$ of the equation

$$\frac{2^{2-N}}{s^{N-2}} = \frac{(s^2+1)^{N-2} + (s^2-1)^{N-2}}{(s^4-1)^{N-2}}$$

and K is the only one solution in $]1, +\infty[$ of

$$\frac{2^{1-N}}{s^N} = \frac{(s^2+1)^{N-1} + (s^2-1)^{N-1}}{(s^4-1)^{N-1}}. \ \Box$$

Now, it is not difficult to prove

Lemma 5.2. The function $\tilde{\Phi}_R$ achieves only one minimum value at a critical point of the form $(\rho_R, \rho_R) \in]k_*, K[^2]$.

5.2. **General case.** Let \mathcal{D} the smooth and bounded domain in \mathbb{R}^N , $N \geq 3$, which define to Ω in (1.2). In this subsection we consider the values m, M as follows: m is the radius of the biggest ball centered at the origin contained in \mathcal{D} and M is the radius of the smallest ball centered at the origin containing to \mathcal{D} . Let w be the unique solution $C^{2,\gamma}(\overline{\Omega})$ of the problem (2.6). By the maximum principle, we check that

$$z_m(x) \le w(x) \le z_M(x), \quad \forall \mu < |x| < m,$$

where $z_m(x) = \alpha \mu^2 W_{R_1}(\mu^{-1}x)$ and $z_M(x) = \beta \mu^2 W_{R_2}(\mu^{-1}x)$, with $R_1 = \mu^{-1}m$ and $R_2 = \mu^{-1}M$. Hence,

$$\Phi_{R_1}(\mu^{-1}x,\mu^{-1}y) \le \Phi_E(\mu^{-1}x,\mu^{-1}y) \le \Phi_{R_2}(\mu^{-1}x,\mu^{-1}y), \quad \forall \, \mu < |x|,|y| < m.$$

Since the function $\tilde{\Psi}(s,s)$ defined in Remark 2 is decreasing in its diagonal for values of s greater that K and goes to 0, then is not difficult to show that the system

$$\frac{\tilde{\Phi}_{R_1}(s,s)}{\tilde{\Phi}_{R_2}(K,K)} \ge 1$$
 and $s \ge K$

posses solution, we say k^* , when we have chosen $\mu > 0$ sufficiently small but fixed. Indeed, if we put $\beta = \max_{x \in \Omega} f(x)$ and $(\alpha m^2 - \beta M^2)K^{N-2} + \beta M^2 \neq 0$ then we can chose in the limit for μ

$$k^* = \max \left\{ K, \left\{ \left(\frac{\alpha m^2 K^{N-2}}{\left(\alpha m^2 - \beta M^2 \right) K^{N-2} + \beta M^2} \right)_+ \right\}^{\frac{1}{N-2}} \right\}.$$

If $(\alpha m^2 - \beta M^2)K^{N-2} + \beta M^2 = 0$, we change K by a value a few greater that K in the definition of k^* . Then the following lemma is obtained

Lemma 5.3. The function $\Phi_E(x,y)$ achieves a relative minimum value in a critical point (x_{μ}, y_{μ}) with x_{μ} and y_{μ} having opposite directions, and $(|x_{\mu}|, |y_{\mu}|) \in]k_*, k^*[^2$. Moreover, $|x_{\mu}|$ and $|y_{\mu}|$ belong to a compact region fully contained in $]k_*, k^*[^2]$, which is independent of all $\mu > 0$ small enough.

Let

$$\mathbf{Q} = \{(x, y) \in \mathbf{V} \times \mathbf{V} : k_* < |x|, |y| < k^*\},\$$

We define the following value

(5.1)
$$c_{\mu} = \Phi_{E}(x_{\mu}, y_{\mu}) = \min_{(x,y) \in \mathbf{Q}} \Phi_{E}(x,y).$$

Let $\delta_{\mu} > 0$ a suitable small value such that the level set

$$\{(x,y) \in \mathbf{Q} : \Phi_E(x,y) = \delta_{\mu}\}$$

is a closed curve and that $\nabla \Phi_E(x,y)$ does not vanish on it. Let us set

(5.2)
$$\Upsilon_{\mu} = \{ (x, y) \in \mathbf{Q} : \Phi_{E}(x, y) < \delta_{\mu} \}.$$

Thus, on this region we have that $\Phi_E(x,y) < \delta_{\mu}$ and if $(x,y) \in \partial \Upsilon_{\mu}$ then one of the following two situations happen: either there is a tangential direction τ to $\partial \Upsilon_{\mu}$ such that $\nabla \Phi_E(x,y) \cdot \tau \neq 0$; or x and y lie in opposite directions, $\Phi_E(x,y) = \delta_{\mu}$ and $\nabla \Phi_E(x,y) \neq 0$, being points orthogonally outwards to Υ_{μ} . Moreover, for $\mu_0 > 0$ small enough fixed

(5.3)
$$\Upsilon_{\hat{\mu}} \subset\subset \Upsilon_{\mu} \subset\subset \mathbf{Q} \quad \text{for all} \quad 0 < \hat{\mu} < \mu < \mu_0.$$

Let us consider now the exterior domain

$$E_{\mu} = \mathbb{R}^N \setminus \overline{B(0,\mu)}.$$

and we denote by G_{μ} and H_{μ} , respectively, the Green's function on E_{μ} and its regular part, then $G_{\mu}(x,y) = \mu^{2-N}G_E(\mu^{-1}x,\mu^{-1}y)$ and $H_{\mu}(x,y) = \mu^{2-N}H_E(\mu^{-1}x,\mu^{-1}y)$. In particular, if we put

$$\Sigma_{\Omega}^{\mu} = \mu \Upsilon_{\mu}$$

with Υ_{μ} defined by (5.2), then Σ_{Ω}^{μ} corresponds precisely to the set where $\Phi_{E}(\mu^{-1}x, \mu^{-1}y) < \delta_{\mu}$, with δ_{μ} defined by (5.2). Moreover, since

$$G(x,y) = G_{\mu}(x,y) + O(1) \quad \forall (x,y) \in \mu \mathbf{Q},$$

where the quantity O(1) is bounded independently of all small μ , in the C^1 -sense, and the same is true for the function H, we have that the function

$$(5.5) \quad \varPhi(x,y) = \frac{1}{2} \left\{ \frac{H(x,x)w^2(y) + 2G(x,y)w(x)w(y) + H(y,y)w^2(x)}{G^2(x,y) - H(x,x)H(y,y)} \right\}$$

satisfies in the region $\mu \mathbf{Q}$ the following relation

(5.6)
$$\Phi(x,y) = \mu^{N+2}\Phi_E(\mu^{-1}x,\mu^{-1}y) + o(1)$$

where the quantity o(1) is bounded independently of all small number $\mu > 0$ in the C^1 -sense. Besides, $o(1) \to 0$ as $\mu \to 0$.

6. The min-max and the proof of the main result

In this section $\mu > 0$ is a fixed small enough number and Ω is the domain given in (1.2) with P = 0. According to the results previously obtained, (4.1) and (4.12), our problem reduces to that of finding a critical point for

(6.1)
$$\Phi(\vec{\xi}, \vec{\Lambda}) = \frac{1}{2} \left\{ \sum_{i=1}^{2} \Lambda_i^2 H(\xi_i, \xi_i) - 2\Lambda_1 \Lambda_2 G(\xi_1, \xi_2) \right\} + \sum_{i=1}^{2} \Lambda_i w(\xi_i),$$

where $\vec{\xi} = (\xi_1, \xi_2) \in \Omega^2$ and $\vec{\Lambda} = (\Lambda_1, \Lambda_2) \in \mathbb{R}^2_+$. Here we consider the function Φ defined over the class $\Sigma^{\mu}_{\Omega} \times \mathbb{R}^2_+$, where Σ^{μ}_{Ω} is defined by (5.4). Indeed Φ has some singularities on this class which we can avoid by replacing the term $G(\xi_1, \xi_2)$ in (6.1) by

(6.2)
$$G_{|_{M}}(\xi_{1}, \xi_{2}) = \begin{cases} G(\xi_{1}, \xi_{2}) & \text{if } G(\xi_{1}, \xi_{2}) \leq M, \\ M & \text{if } G(\xi_{1}, \xi_{2}) > M, \end{cases}$$

where M is a big number. Hence, we can work with the functional modified, which by simplicity we still call Φ .

For every $\vec{\xi} \in \Sigma_{\Omega}^{\mu}$ we choose $d(\vec{\xi}) = (d_1(\vec{\xi}), d_2(\vec{\xi})) \in \mathbb{R}^2$ being a vector which defines a negative direction of the associated quadratic form with Φ . Such direction exists since $G^2(x,y) - H(x,x)H(y,y) > 0$ over Σ_{Ω}^{μ} . More precisely, for fixed $\vec{\xi}_0 \in \Sigma_{\Omega}^{\mu}$, the function

$$\Phi(\vec{\xi_0}, \vec{d}) = \frac{1}{2} \left\{ \sum_{i=1}^{2} d_i^2 H(\xi_{0,i}, \xi_{0,i}) - 2d_1 d_2 G(\xi_{0,1}, \xi_{0,2}) \right\} + \sum_{i=1}^{2} d_i w(\xi_{0,i}),$$

regarded as a function of $\vec{d} = (d_1, d_2)$ only, with $d_1, d_2 > 0$, has a unique critical point $\mathbf{d}(\vec{\xi_0}) = (\bar{d}_1(\vec{\xi_0}), \bar{d}_2(\vec{\xi_0}))$ given by

$$\bar{d}_i(\vec{\xi_0}) = \frac{H(\xi_{0,j}, \xi_{0,j})w(\xi_{0,i}) + G(\xi_{0,i}, \xi_{0,2})w(\xi_{0,j})}{G^2(\xi_{0,i}, \xi_{0,i}) - H(\xi_{0,i}, \xi_{0,i})H(\xi_{0,i}, \xi_{0,i})}, \quad i, j = 1, 2, \ i \neq j.$$

In particular,

(6.3)
$$\Phi(\vec{\xi_0}, \mathbf{d}(\vec{\xi_0})) = \Phi(\vec{\xi_0})$$

where Φ_{Ω} is the function given by (5.5). Then we simply choose $d(\vec{\xi}) = \bar{\mathbf{d}}(\vec{\xi})$. Let x_{μ} and y_{μ} the points given by (5.1). From now on we consider $\hat{\rho}_{\mu} = |x_{\mu}|$ and $\bar{\rho}_{\mu} = |y_{\mu}|$. Put

$$\mathbf{S} = \{ (x, y) \in \mathbf{Q}^2 : (|x|, |y|) = (\mu \hat{\rho}_{\mu}, \mu \bar{\rho}_{\mu}) \}.$$

Let K be the class of all continuous functions

$$\kappa: \mathbf{S} \times I_0 \times [0,1] \to \Sigma_0^{\mu} \times \mathbb{R}^2_+$$

such that

1) $\kappa(\vec{\xi}, \sigma_0, t) = (\vec{\xi}, \sigma_0 d(\vec{\xi}))$ and $\kappa(\vec{\xi}, \sigma_0^{-1}, t) = (\vec{\xi}, \sigma_0^{-1} d(\vec{\xi}))$ for all $\vec{\xi} \in \mathbf{S}$, $t \in [0, 1]$.

 $2)\kappa(\vec{\xi},\sigma,0) = (\vec{\xi},\sigma d(\vec{\xi}))$ for all $(\vec{\xi},\sigma) \in \mathbf{S} \times I_0$, where $I_0 = [\sigma_0,\sigma_0^{-1}]$, being σ_0 a small number to be chosen later.

Then we define the min-max value as

(6.4)
$$c(\Omega) = \inf_{\kappa \in \mathcal{K}} \sup_{(\vec{\xi}, \sigma) \in \mathbf{S} \times I_0} \Phi(\kappa(\vec{\xi}, \sigma, 1)).$$

In what follows we will prove that $c(\Omega)$ is a critical value of Φ .

Lemma 6.1. For all sufficiently small $\mu > 0$, the following estimate holds:

$$c(\Omega) \le \mu^{N+2} c_{\mu} + o(1)$$

where $o(1) \to 0$ as $\mu \to 0$, and c_{μ} is the value defined in (5.1).

Proof. For all $t \in [0,1]$, we consider the test path defined as $\kappa(\vec{\xi}, \sigma, t) = (\vec{\xi}, \sigma d(\vec{\xi}))$. Maximizing $\Phi(\vec{\xi}, \sigma d(\vec{\xi}))$ in the variable σ , we note that this maximum value is attained at $\sigma = 1$, because our choice of the vector $d(\vec{\xi})$. Hence, from (6.3), we have that

$$\max_{\sigma \in I_0} \Phi(\vec{\xi}, \sigma d(\vec{\xi})) = \Phi(\vec{\xi}, d(\vec{\xi})).$$

On the other hand, by definition of S, we see that

$$\Phi_E(\mu^{-1}\xi_1, \mu^{-1}\xi_2) = c_{\mu}.$$

Then the conclusion is immediate from (5.6) and the definition of $c(\Omega)$.

In order to prove that $c(\Omega)$ is indeed a critical point of Φ we need an intersection lemma. The idea behind this result is the topological continuation of the set of solution of an equation (see [15]). For every $(\vec{\xi}, \sigma, t) \in \mathbf{S} \times I_0 \times [0, 1]$ we denote $\kappa(\vec{\xi}, \sigma, t) = (\tilde{\xi}(\xi, \sigma, t), \tilde{\Lambda}(\vec{\xi}, \sigma, t)) \in \Sigma_{\Omega}^{\mu} \times \mathbb{R}_{+}^{2}$, with $\tilde{\xi} = (\tilde{\xi}_{1}, \tilde{\xi}_{2})$, $\tilde{\Lambda} = (\tilde{\Lambda}_{1}, \tilde{\Lambda}_{2})$ and we define the set

$$\mathbf{M} = \{ (\vec{\xi}, \sigma) \in \mathbf{S} \times I_0 : \tilde{\Lambda}_1(\vec{\xi}, \sigma, 1) \cdot \tilde{\Lambda}_2(\vec{\xi}, \sigma, 1) = 1 \}.$$

The following lemma has been probed by Del Pino, Felmer and Musso in Lema 6.2 of [13], therefore here the proof is omitted.

Lemma 6.2. For every open neighborhood W of \mathbf{M} in $\mathbf{S} \times I_0$, the projection $g: W \to \mathbf{S}$ induces a monomorphism in cohomology, that is

$$q^*: H^*(\mathbf{S}) \to H^*(W)$$

is injective.

Proposition 6.3. There is a constant A > 0 such that

$$\sup_{(\vec{\xi},\sigma)\in\mathbf{S}\times I_0} \Phi\left(\kappa(\vec{\xi},\sigma,1)\right) \ge -A, \quad \forall \kappa \in \mathcal{K}.$$

Proof. Note that $\vec{\xi} \in \Sigma_{\Omega}^{\mu}$ implies that $\xi_i \in B(0, \mu k^*) \setminus B(0, \mu k_*)$, for i = 1, 2, with $\hat{\rho}_{\mu}, \bar{\rho}_{\mu} \in]k_*, k^*[$ for any μ sufficiently small. Thus, we can find a number $\delta_0 > 0$ such that if $|\xi_1 - \xi_2| < \delta_0$, then $\xi_1 \cdot \xi_2 > 0$. Let $A_0 > 0$ be such that $G(x, y) \geq A_0$ implies that $|x - y| < \delta_0$.

We argue by contradiction. Let us assume that for certain $\kappa \in \mathcal{K}$

$$\Phi(\kappa(\vec{\xi}, \sigma, 1)) \le -A_0 \quad \forall (\vec{\xi}, \sigma) \in \mathbf{S} \times I_0.$$

This implies that for all $(\vec{\xi}, \sigma) \in \mathbf{M}$, $(\tilde{\xi}, \tilde{\sigma}) = (\tilde{\xi}(\vec{\xi}, \sigma, 1), \tilde{\Lambda}(\vec{\xi}, \sigma, 1))$, we have

$$2G(\tilde{\xi}_1, \tilde{\xi}_2) - \left(\tilde{\Lambda}_i^2 H(\tilde{\xi}_1, \tilde{\xi}_1) + 2\tilde{\Lambda}_1 w(\tilde{\xi}_1 + H(\tilde{\xi}_2, \tilde{\xi}_2) + 2\tilde{\Lambda}_2 w(\tilde{\xi}_2)\right) \ge 2A_0$$

and since $H(\tilde{\xi}_i, \tilde{\xi}_i) > 0$ and $w(\tilde{\xi}_i) > 0$, we conclude that if we take a small neighborhood W of \mathbf{M} in $\mathbf{S} \times I_0$, then for every $(\vec{\xi}, \sigma) \in W$ one has

$$G(\tilde{\xi}(\xi, \sigma, 1)) \ge A_0.$$

Hence $|\tilde{\xi}_1 - \tilde{\xi}_2| < \delta_0$. Let us fix points $\zeta_i \in \mathbb{R}^N$, i = 1, 2, such that $|\zeta_1| = \hat{\rho}_{\mu}$ and $|\zeta_2| = \bar{\rho}_{\mu}$, then $\vec{\zeta} = (\zeta_1, \zeta_2) \in \mathbf{S}$. Denoting $\kappa_1 = \kappa(\cdot, 1)$, we see that because of the above conclusion $\kappa_1(W) \subset (\Sigma_{\Omega}^{\mu} \setminus T(\vec{\zeta})) \times \mathbb{R}^2_+$, where $T(\vec{\zeta}) = \{(t_1\zeta_1, t_2\zeta_2) : t_1, t_2 \in]k, K[\}$.

Consider the map $s: \Sigma_{\Omega}^{\mu} \times \mathbb{R}_{+}^{2} \to \mathbf{S}$ defined componentwise as $s(\vec{\xi}, \vec{\Lambda}) = \mu(\hat{\rho}_{\mu}\xi_{1}/|\xi_{1}|, \bar{\rho}_{\mu}\xi_{2}/|\xi_{2}|)$. Then $\kappa_{0}^{*} \circ s^{*} : H^{*}(\mathbf{S}) \to H^{*}(\mathbf{S} \times I_{0})$, where $\kappa_{0} = \kappa(\cdot, 0)$ is an isomorphism. By the homotopy axiom we deduce then that $\kappa_{1}^{*} \circ s^{*}$ is also an isomorphism. We consider the following commutative diagram:

$$H^{*}(\mathbf{S} \times I_{0}) \qquad \stackrel{\kappa_{1}^{*}}{\longleftarrow} \qquad H^{*}(\Sigma_{\Omega}^{\mu} \times \mathbb{R}_{+}^{2}) \qquad \stackrel{\kappa^{*}}{\longleftarrow} \qquad H^{*}(\mathbf{S})$$

$$\stackrel{i_{1}^{*}}{\downarrow} \qquad \qquad \stackrel{\tilde{\kappa}_{1}^{*}}{\longleftarrow} \qquad H^{*}(W) \qquad \stackrel{\tilde{\kappa}_{1}^{*}}{\longleftarrow} \qquad H^{*}(\mathbf{S} \setminus \{\vec{\zeta}\}),$$

where i_1 , i_2 and i_3 are inclusion maps, $\tilde{\kappa}_1 = \kappa_1|_W$ y $\tilde{s} = s|_{\kappa_1(W)}$. From Lemma 6.2 we have that i_1^* is a monomorphism which is a contradiction with the fact that $H^{2N}(\mathbf{S}\setminus\{\vec{\zeta}\})=0$. Thus, the result follows.

In order to prove that the min-max number (6.4) is a critical value of Φ , we need care about the fact the domain in which Φ is defined is not necessarily closed for the gradient flow of Φ . The following lemma appears in this direction.

Lemma 6.4. Assume that $\mu > 0$ is a small enough number. Let $(\xi^n, \Lambda^n) \in \Sigma_{\Omega}^{\mu} \times \mathbb{R}^2_+$ be a sequence such that

(6.5)
$$\nabla_{\vec{\Lambda}} \Phi(\vec{\xi}_n, \vec{\Lambda}_n) \to 0.$$

Then each component of $\vec{\Lambda}_n$ is bounded above and below by positive constants.

Proof. Note that $\overline{\Sigma}_{\Omega}^{\mu} \subset\subset \Omega$. Hence $w(\xi_i) > 0$, i = 1, 2, for all $\vec{\xi} \in \overline{\Sigma}_{\Omega}^{\mu}$. We put $\vec{\xi}_n = (\xi_{1,n}, \xi_{2,n})$ and $\vec{\Lambda}_n = (\Lambda_{1,n}, \Lambda_{2,n})$. Then (6.5) is equivalent to

$$\Lambda_{i,n}H(\xi_{i,n},\xi_{i,n}) - \Lambda_{i,n}G(\xi_{i,n},\xi_{i,n}) + w(\xi_{i,n}) \to 0; \quad i,j=1,2, \quad i \neq j.$$

It is clear that $|\vec{\Lambda}_n| \to 0$ or $\Lambda_{i,n} \to 0$ and $\Lambda_{j,n} \to C$, with C different of zero and $i \neq j$, cannot happen. Hence, we can suppose that $|\vec{\Lambda}_n| \to +\infty$. Since H and G remain uniformly controlled, (μ is fixed) we easily see that

 $\Lambda_{1,n} \to +\infty$ and $\Lambda_{2,n} \to +\infty$. We put $\tilde{\Lambda}_{i,n} = \frac{\Lambda_{i,n}}{|\vec{\Lambda}_n|}$, for i=1,2, and passing to a subsequence, if necessary, we may assume that this sequence it approaches a nonzero vector $(\hat{\Lambda}_1, \hat{\Lambda}_2)$ with $\hat{\Lambda}_i \neq 0$ for i=1,2. It follows that

$$\tilde{\Lambda}_{i,n}H(\xi_{i,n},\xi_{i,n}) - \tilde{\Lambda}_{j,n}G(\xi_{1,n},\xi_{2,n}) + \frac{w(\xi_{i,n})}{|\vec{\Lambda}_n|} \to 0; \quad i,j=1,2, \quad i \neq j.$$

For a suitable subsequence, we obtain for some $(\bar{\xi}_1, \bar{\xi}_2) \in \overline{\Sigma_{\Omega}^{\mu}}$ the system

$$\frac{\hat{\Lambda}_1}{\hat{\Lambda}_2} = \frac{G(\bar{\xi}_1, \bar{\xi}_2)}{H(\bar{\xi}_1, \bar{\xi}_1)} \quad \text{and} \quad \frac{\hat{\Lambda}_2}{\hat{\Lambda}_1} = \frac{G(\bar{\xi}_1, \bar{\xi}_2)}{H(\bar{\xi}_2, \bar{\xi}_2)}.$$

Hence

$$G^2(\bar{\xi}_1, \bar{\xi}_2) - H(\bar{\xi}_1, \bar{\xi}_1)H(\bar{\xi}_2, \bar{\xi}_2) = 0$$

which is a contradiction, since the quantity on the left hand side in the previous equality is strictly positive when $\mu > 0$ is chosen sufficiently small. This finishes the proof. \blacksquare

Proposition 6.5. Let us assume that $\mu > 0$ is an small enough number. Then the functional Φ satisfies the (PS) condition in the region $\Sigma_{\Omega}^{\mu} \times \mathbb{R}_{+}^{2}$ at the level $c(\Omega)$ given in (6.4).

Proof. Let us consider a sequence $(\vec{\xi}_n, \vec{\Lambda}_n) \in \Sigma_{\Omega}^{\mu} \times \mathbb{R}^2_+$ such that

$$\nabla_{\vec{\Lambda}} \Phi(\vec{\xi_n}, \vec{\Lambda}_n) \to 0$$
 and $\nabla_{\vec{\xi}}^{\tau} \Phi(\vec{\xi_n}, \vec{\Lambda}_n) \to 0$,

where $\nabla^{\tau}_{\vec{\xi}}\Phi$ corresponds to the tangential gradient of Φ to $\partial \Sigma^{\mu}_{\Omega} \times \mathbb{R}^{2}_{+}$ in case that $\vec{\xi}_{n}$ it is approaching to $\partial \Sigma^{\mu}_{\Omega}$ or the full gradient in otherwise. From the previous lemma, the components of $\vec{\Lambda}_{n}$ are bounded above and below by positive constants, so that we may assume, passing to a subsequence if necessary, that $(\vec{\xi}_{n}, \vec{\Lambda}_{n}) \to (\vec{\xi}_{0}, \vec{\Lambda}_{0}) \in \overline{\Sigma^{\mu}_{\Omega}} \times \mathbb{R}^{2}_{+}$ and $\Phi(\vec{\xi}_{n}, \vec{\Lambda}_{n}) \to c(\Omega)$. Then

$$\nabla_{\vec{\Lambda}} \Phi(\vec{\xi_0}, \vec{\Lambda}_0) = 0.$$

Observe that if $\vec{\xi}_0 \in \operatorname{int}(\Sigma_{\Omega}^{\mu})$ then $\vec{\xi}_0$ is a critical point of Φ . We assume the opposite, this is that $\vec{\xi}_0 \in \partial \Sigma_{\Omega}^{\mu}$. Then

$$\Phi_E(\mu^{-1}\xi_{0,1},\mu^{-1}\xi_{0,2}) = \delta_{\mu}.$$

Firstly we note that $\nabla_{\vec{\Lambda}} \Phi(\vec{\xi}_0, \vec{\Lambda}_0) = 0$, then $\vec{\Lambda}_0$ satisfies

$$\Lambda_{0,i} = \frac{H(\xi_{0,j},\xi_{0,j})w(\xi_{0,i}) + G(\xi_{0,i},\xi_{0,j})w(\xi_{0,j})}{G^2(\xi_{0,i},\xi_{0,j}) - H(\xi_{0,i},\xi_{0,i})H(\xi_{0,j},\xi_{0,j})}, \quad i,j=1,2, \ i \neq j.$$

Substituting these values in Φ , from (6.3) we obtain

$$c(\Omega) = \Phi(\vec{\xi}_0, \vec{\Lambda}_0) = \Phi(\vec{\xi}_0)$$

and from (5.6) we deduce that

$$c(\Omega) = \mu^{N+2} \Phi_E(\mu^{-1} \xi_{0,1}, \mu^{-1} \xi_{0,2}) + \theta(\vec{\xi_0}),$$

where $\theta(\vec{\xi}_0)$ is small in the C^1 sense, as $\mu > 0$ becomes smaller. Hence, $\nabla_{\vec{\xi}} \Phi(\vec{\xi}_0, \vec{\Lambda}_0) \cdot \tau \sim 0$ for any tangential direction τ to $\partial \Sigma_{\Omega}^{\mu}$. Thus, from the analysis in the previous section, we have that $\xi_{0,1}, \xi_{0,2}$ are in opposite directions, $\Phi(\vec{\xi}_0, \vec{\Lambda}_0) \sim \mu^{N+2} \delta_{\mu}$ and $\nabla_{\vec{\xi}} \Phi(\vec{\xi}_0, \vec{\Lambda}_0)$ must be away from 0. Then

choosing τ parallel to $\nabla_{\vec{\xi}} \Phi(\vec{\xi_0}, \vec{\Lambda}_0)$ we obtain that $\nabla_{\vec{\xi}} \Phi(\vec{\xi_0}, \vec{\Lambda}_0) \cdot \tau$ must to be away from 0, which is a contradiction. Then, the point $\vec{\xi_0} \in \operatorname{int}(\Sigma_{\Omega}^{\mu})$, which implies that the (PS) condition holds and the results follows.

Now we are in conditions to complete the proof of Theorem 1.1

Proof of Theorem 1.1. Let us consider the domain $\Sigma_{\mathbf{a}}^{\mathbf{b}} = \Sigma_{\Omega}^{\mu} \times [\mathbf{a}, \mathbf{b}]^2$ with \mathbf{a}, \mathbf{b} to be choose later. Then the functional \mathcal{I} given by (4.1) is well defined on $\Sigma_{\mathbf{a}}^{\mathbf{b}}$ except on the set

$$\Delta_{\rho} = \{\vec{\xi}, \vec{\Lambda}\} \in \Sigma_{\mathbf{a}}^{\mathbf{b}} : |\xi_1 - \xi_2| < \rho\}.$$

From (4.3) we can extend \mathcal{I} to all $\Sigma_{\mathbf{a}}^{\mathbf{b}}$ by extending Φ as in (6.2), and keep relations (4.3) and (4.12) over $\Sigma_{\mathbf{a}}^{\mathbf{b}}$.

From Proposition 6.5, Φ satisfies the (PS) condition. Then there exist constants $\mathbf{b} > 0$, c > 0 and $\varrho_0 > 0$, such that if $0 < \varrho < \varrho_0$, and $(\vec{\xi}, \vec{\Lambda}) \in \Sigma^{\mu}_{\Omega}$ satisfying $|\vec{\Lambda}| \geq \mathbf{b}$ and $c(\Omega) - 2\varrho \leq \Phi(\vec{\xi}, \vec{\Lambda}) \leq c(\Omega) + 2\varrho$, then $|\nabla \Phi(\vec{\xi}, \vec{\Lambda})| \geq c$.

We now use the min-max characterization of $c(\Omega)$ to choose $\kappa \in \mathcal{K}$ so that

$$c(\Omega) \leq \sup_{(\vec{\xi},\sigma) \in \mathbf{S} \times I_0} \Phi \left(\kappa(\vec{\xi},\sigma,1) \right) \leq c(\Omega) + \varrho.$$

By making **a** small and **b** large if necessary, we can assume that $\kappa(\vec{\xi}, \sigma, 1) \in \Sigma_{2\mathbf{a}}^{\mathbf{b}/2} \subset \Sigma_{\mathbf{a}}^{\mathbf{b}}$ for all $(\vec{\xi}, \sigma) \in \mathbf{S} \times I_0$. Consider now $\eta : \Sigma_{\mathbf{a}}^{\mathbf{b}} \times [0, +\infty] \to \Sigma_{\mathbf{a}}^{\mathbf{b}}$ being the solution of the equation

Consider now $\eta: \mathbf{\Sigma_a^b} \times [0, +\infty] \to \mathbf{\Sigma_a^b}$ being the solution of the equation $\dot{\eta} = -h(\eta)\nabla\mathcal{I}(\eta)$ with initial condition $\eta(\vec{\xi}, \vec{\Lambda}, 0) = (\vec{\xi}, \vec{\Lambda})$. Here the function h is defined in $\mathbf{\Sigma_a^b}$ so that $h(\vec{\xi}, \vec{\Lambda}) = 0$ for all $(\vec{\xi}, \vec{\Lambda})$ with $\Phi(\vec{\xi}, \vec{\Lambda}) \leq c(\Omega) - 2\varrho$ and $h(\vec{\xi}, \vec{\Lambda}) = 1$ if $\Phi(\vec{\xi}, \vec{\Lambda}) \geq c(\Omega) - \varrho$, satisfying $0 \leq h \leq 1$.

Hence, by the choice of **a** y **b**, and bearing in mind (4.3) and (4.12), we have that $\eta(\vec{\xi}, \vec{\Lambda}, t) \in \Sigma_{\mathbf{a}}^{\mathbf{b}}$ for all $t \geq 0$. Then the following min-max value

$$C(\Omega) = \inf_{t \geq 0} \sup_{(\vec{\xi}, \sigma) \in \mathbf{S} \times I_0} \mathcal{I} (\eta(\kappa(\vec{\xi}, \sigma, 1), t))$$

is a critical value for \mathcal{I} . We are always assuming that ε is small enough, to make the errors in (4.1) sufficiently small. Theorem 1.1 has been proven.

Acknowledgement

The author is indebted to the Departamento de Ingeniería Matemática at Universidad de Chile, where this work was carried out, for its support by a fellowship from MECESUP grant UCH0009. The author also thanks to the Professor Manuel Del Pino for useful suggestions and comments.

References

- [1] I. Ali and A. Castro, Positive solutions for a semilinear elliptic problem whit critical exponent, Nonlinear Anal., 27 (1996), pp. 327-338.
- [2] A. Ambrosetti, A perturbation theorem for superlinear boundary value problems, Math. Res. Center, Univ. Wisconsin at Madison, Tech. Sum. Report, 1446 (1974).
- [3] T. Aubin, Problèmes isopérimétriques et espaces de Sobolev, J. Differ. Geometry, 11 (1976), pp. 573-598.
- [4] A. Bahri, "Critical points at infinity in some variational problems", Pitman Research Notes in Math. Series 182, Longman 1989.
- [5] A. Bahri and H. Berestycki, A perturbation method in critical point theory and applications, Trans. Amer. Math. Soc., **267** (1981), pp. 1-32.

- [6] H. Brezis and L. Nirenberg, *Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents*, Comm. Pure Appl. Math., **36** (1983), pp. 437-477.
- [7] H. Brezis and L. Nirenberg, A minimization problem with critical exponent and nonzero data, in Symmetry in Nature, Scuola Norm. Sup. Pisa, 1989, pp. 129-140.
- [8] L.A. Caffarelli, B. Gidas and J. Spruck, Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth, Comm. Pure Appl. Math., 42 (1989), pp. 271-297.
- [9] M. Clapp, M. Del Pino and M. Musso, Multiple solutions for a non-homogeneous elliptic equation at the critical exponent, Proc. Royal Soc. Edinburgh Section A, 134 (2004), pp. 69-87.
- [10] M. Clapp, O. Kavian and B. Ruf, Multiple solutions of nonhomogeneous elliptic equations with critical nonlinearity on symmetric domains, Commun. in Contemp. Math., 5 (2003), pp. 147-169.
- [11] J.M. Coron, Topologie et cas limite des injections de Sobolev, C.R. Acad. Sc. Paris, 299 Serie I (1984), pp. 209-212.
- [12] M. del Pino, P. Felmer and M. Musso, Two-bubble solutions in the super-critical Bahri-Coron's problem, Calculus of Variations and PDE, 16 (2003), pp. 113-145.
- [13] M. del Pino, P. Felmer and M. Musso, Multi-peak solution for super-critical elliptic problems in domains with small holes, J. Diff. Eq., 36 (2002), pp. 511-540.
- [14] M. del Pino, P. Felmer and M. Musso, Erratum: Two-bubble solutions in the supercritical Bahri-Coron's problem, Calculus of Variations and PDE, 20 (2004), pp. 231-233.
- [15] P. Fitzpatrick, I. Massabó and J. Pejsachowicz, Global several-parameter bifurcation and continuation theorem: a unified approach via Complementing Maps, Math. Ann., 263 (1983), pp. 61-73.
- [16] F. Merle, Sur la non-existence de solutions positives d'équations elliptiques surlinéaires, C. R. Acad. Sci. Paris, 306 Serie I (1988), pp. 313-316.
- [17] S. Pohozaev, Eigenfunctions of the equation $\Delta u + \lambda f(u) = 0$, Soviet Math. Dokl., 6 (1965), pp. 1408-1411.
- [18] P.H. Rabinowitz, Multiple critical points of perturbed symmetric functionals, Trans. Amer. Math. Soc., 272 (1982), pp. 753-770.
- [19] P.H. Rabinowitz, Minimax methods in critical point theory with applications to differential equations, Reg. Conf. Ser. Math. 65, Amer. Math. Soc., Providence, RI 1986.
- [20] O. Rey, Concentration of solutions to elliptic equations with critical nonlinearity, Ann. Inst. Henri Poincaré, Anal. non linéaire, 9 (1992), pp. 201-218.
- [21] O. Rey and J. Wei, Blowing up solution for an elliptic Newmann problem with subor supercritical nonlinearity I. N = 3, J. Funct. Anal., 212 (2004), pp. 472-499.
- [22] O. Rey and J. Wei, Blowing up solution for an elliptic Newmann problem with sub-or supercritical nonlinearity II. $N \ge 4$, Ann. Inst. H. Poincaré, Anal. Nonlinéaire **22** (2005), pp. 459-484.
- [23] M. Struwe, Infinitely many critical points for functionals which are not even and applications to superlinear boundary value problems, Manuscripta Math. 32 (1980), pp. 335-364.
- [24] G. Talenti, Best constants in Sobolev inequality, Ann. Mat. Pure Appl., 110 (1976), pp. 353-372.
- [25] K. Tanaka, Morse indices at critical points related to the symmetric mountain pass theorem and applications, Commun. in Partial Diff. Eq., 14 (1989), pp. 99-128.
- [26] G. Tarantello, On nonhomogeneous elliptic equations involving critical Sobolev exponent, Ann. Inst. Henri Poincaré, Anal. non linéaire, 9 (1992), pp. 281-304.
- S. Alarcón Departamento de Ingeniería Matemática, Universidad de Chile, Casilla 170 Correo 3, Santiago, Chile.