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Abstract. In this paper we construct solutions which develop two neg-

ative spikes as ε → 0+ for the problem −∆u = |u|
4

N−2 u + εf(x) in Ω,
u = 0 on ∂Ω, where Ω ⊂ RN is a bounded smooth domain exhibiting a
small hole, with f ≥ 0, f 6≡ 0. This result extends Theorem 2 in [9] in
the sense that no symmetry assumptions on the domain are required.

1. Introduction

This paper deals with the construction of solutions of the problem

(1.1)
{
−∆u = |u|p−1u+ εf(x) in Ω,

u = 0 on ∂Ω,

where Ω is a bounded smooth domain in RN , N ≥ 3, which has a small
hole, p = N+2

N−2 is the critical Sobolev exponent, f(x) is an inhomogeneous
perturbation, f ≥ 0, f 6≡ 0 and ε > 0 is a small parameter.

In the case 1 < p < N+2
N−2 , it is well-known that if f = 0, the associated

energy functional to problem (1.1) is even and satisfies the (PS) condition
in H1

0 (Ω) which implies the existence of infinitely many nontrivial solutions
by standard Ljusternik-Schnirelmann theory. Also known are many results
on existence and multiplicity of sign-changing solutions for small and large
inhomogeneous perturbation, see [2, 23, 5, 18, 19, 25]; whereas in [16] was
proved that (1.1) does not admit any positive solution if ε > 0 is too large.

In the critical case, p = N+2
N−2 , the embedding H1

0 (Ω) ⊂ Lp+1(Ω) is contin-
uous but not compact, so that the (PS) condition does not hold, and serious
difficulties in facing the existence question arise. In fact, Pohozaev [17]
proved that (1.1) has no solution if f = 0 and Ω is strictly star-shaped. In
contrast, Brezis and Nirenberg [7] showed that this situation can be reverted
introducing suitable additive perturbations. Rey [20] pointed out that the
result in [7] implies that if f ≥ 0, f 6= 0 and f ∈ H−1(Ω), then at least
two positive solutions exist for ε > 0 small enough. Moreover, in [20] was
proven that if f ≥ 0, f 6≡ 0, is sufficiently regular, then at least cat(Ω) + 1
positive solutions exist for ε > 0 sufficiently small, one of them converging
uniformly to 0 while the others concentrate at some special points in Ω,
depending on f and the regular part of Green’s function of the Laplacian
on Ω, as ε → 0. In parallel to Rey’s result in [20], but with a different
approach, Tarantello [26] proved that (1.1) admits at least two solutions
for f 6≡ 0 satisfying ‖εf‖H−1(Ω) < CN , where CN is an explicit constant;
such solutions are positive if f ≥ 0. The effect of the symmetries in further
multiplicity of solutions has been considered in some works. Ali and Castro
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[1] proved that the existence result in [7] is optimal for positive solutions
in a ball: if Ω is a ball and f ≡ 1, problem (1.1) have exactly two positive
solutions for all ε > 0 small enough. More recently, Clapp, Kavian and Ruf
[10] proved that if Ω is symmetric with respect to 0, 0 ∈/Ω, and f is even,
then at least cat(Ω) + 2 positive solutions exist provided that ‖εf‖H−1 is
sufficiently small. The results in [7, 20, 26, 1, 10] deal with existence of
positive solutions to problem (1.1), provided that f ≥ 0 and f 6= 0, where
ε > 0 is a small parameter.

Concerning solutions which are not necessarily positive, Clapp, del Pino
and Musso [9] showed existence of solutions of (1.1) under certain symmetry
assumptions in the domain Ω and the function f . Such solutions develop k
negative spikes, for any k ≥ k0(Ω) where k0(Ω) is a sufficiently large number
depending of Ω.

In this paper we leave aside any symmetry assumptions on the domain Ω
and the perturbation f , and we find solutions to problem (1.1) developing
a negative double-spike shape. Besides, we give precise information about
the asymptotic profile of the blow-up of these solutions as ε → 0 and we
indicate a clearly delimited region where the spikes are formed.

More precisely, our setting in problem (1.1) is as follows: let us consider
the domain

(1.2) Ω = D \B(P, µ),

where D is a bounded smooth domain in RN , N ≥ 3, P ∈ D, and µ > 0 is a
small number. Let us consider f ∈ C0,γ(Ω), for some 0 < γ < 1, such that
infx∈Ω f(x) > 0 and, by simplicity, we fix P = 0. Then our main result is

Theorem 1.1. There exists a constant µ0 = µ0(f,D) > 0, such that for each
0 < µ < µ0 fixed, there exists a number ε0 > 0 and a family of solutions uε

of (1.1), for 0 < ε = εn < ε0, with the following property: uε has exactly a
pair of local minimum points (ξε

1, ξ
ε
2) ∈ Ω2 with k∗µ < |ξε

i | < k∗µ, i = 1, 2,
for certain constants k∗, k∗ independent of µ, and such that for each small
δ > 0,

inf
{|x−ξε

i |>δ, i=1,2}
uε(x)→ 0 and inf

{|x−ξε
i |<δ}

uε(x)→ −∞, i = 1, 2

as ε→ 0.

Indeed we will find that uε is a nontrivial solution of (1.1) of the form

uε(x) = −αN

2∑
i=1

{
ε

2
N−2λiε

ε
4

N−2λ2
iε + |x− ξε

i |2

}N−2
2

+ ε−1φ̂(x) + θε(x),

where θε(x)→ 0 uniformly as ε→ 0, φ̂ is the unique solution of the problem{
−∆φ̂(x) = ε2f(x) in Ω,

φ̂ = 0 on ∂Ω,

αN = (N(N − 2))
N−2

4 and the points ξε
i → ξi, up to subsequences, where

(ξ1, ξ2) is a critical point of the functional

Φ(x, y) =
1
2

{
H(x, x)w2(y) + 2G(x, y)w(x)w(y) +H(y, y)w2(x)

G2(x, y)−H(x, x)H(y, y)

}
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defined in the region {(x, y) ∈ Ω2 : G(x, y)−H
1
2 (x, x)H

1
2 (y, y) > 0, x 6= y}.

Here G and H are, respectively, the Green’s function of the Laplacian on Ω
and its regular part, and w is the unique solution of the problem{

−∆w = f in Ω,
w = 0 on ∂Ω.

Besides, one can identify the limits λi of λiε as

λi =
(
a−1

N

H(ξj , ξj)w(ξi) +G(ξi, ξj)w(ξj)
G2(ξi, ξj)−H(ξi, ξi)H(ξj , ξj)

) 2
N−2

, i 6= j, i, j = 1, 2,

where aN is an explicit constant, and consider the constants k∗, k∗ as follows:
k∗ is the unique solution in ]1,+∞[ of the equation

22−N

sN−2
=

(s2 + 1)N−2 + (s2 − 1)N−2

(s4 − 1)N−2

and, K ≤ k∗ = k ∗ (Ω, f) <∞ where K is the unique solution in ]1,+∞[ of
the equation

21−N

sN
=

(s2 − 1)N−1 + (s2 + 1)N−1

(s4 − 1)N−1
.

In particular, if f is a constant and Ω is an annulus, then k∗ = K.
On the other hand, it will be clear from the proof that the small excised

domain does not need to be exactly a ball, and we consider this case just
for notational simplicity.

The proof of Theorem 1.1 follows a Lyapunov-Schmidt reduction proce-
dure, related with this problem. This method has been used for solving
problem (1.1) in the critical case, see [20, 9] and in the slightly supercritical
case with f = 0, see [12, 13], and also [21, 22] for related results.

In the next section we derive some basic estimates for the reduced energy
associated to this problem. Sections 3 − 4 will be devoted to discuss the
finite-dimensional reduction scheme which we use for the construction of
solutions of (1.1). In Section 5 we introduce an auxiliary function which
will be the key in our min-max scheme which we develop in Section 6 to
establish finally the Theorem 1.1.

2. Basic estimates in the reduced energy

Let Ω be a bounded smooth domain in RN , N ≥ 3, and let us consider
the expanded domain

Ωε = ε−
2

N−2 Ω, ε > 0.

Doing the change of variable

vε(x′) = −ε u(ε
2

N−2x′), x′ ∈ Ωε,

we note that u solves (1.1) if and only if vε solves

(2.1)
{

∆v + |v|p−1v = εp+1f̃(x′) in Ωε,
v = 0 on ∂Ωε,
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where p = N+2
N−2 and f̃(x′) = f(ε

2
N−2x′). It is well-known that all positive

solutions of equation ∆ϑ+ ϑp = 0 in RN are given by the functions

Ūλ,ξ(x) = αN

( λ

λ2 + |x− ξ|2
)N−2

2
,

with λ > 0, ξ ∈ RN and αN = (N(N − 2))
N−2

4 , see [3, 24, 7, 8]. Since Ωε

is expanding to the whole RN as ε → 0, and εp+1f̃(x′) → 0 uniformly as
ε → 0, it is reasonable to think that, for certain numbers λ1, λ2 > 0 and
points ξ1, ξ2 ∈ Ω, some solution vε of (2.1) becomes

vε ∼ Ūλ1,ξ′1
+ Ūλ2,ξ′2

,

where ξ′i = ε−
2

N−2 ξi ∈ Ωε, where from now on we use the letter ξ to denote
a point in Ω and ξ′ to denote a point in Ωε.

From [11], we know that a better approximation to vε should be obtained
by using the orthogonal projections onto H1

0 (Ωε) of the functions Ūλ,ξ′ ,
denoted by Uλ,ξ′ , namely the unique solution of the problem{

−∆Uλ,ξ′ = Ūp
λ,ξ′ in Ωε,

Uλ,ξ′ = 0 on ∂Ωε.

In other words, Uλ,ξ′ = Ūλ,ξ′ − ῡλ,ξ′ , where ῡλ,ξ′ solves{
−∆ῡλ,ξ′ = 0 in Ωε,

ῡλ,ξ′ = Ūλ,ξ′ on ∂Ωε.

Hence, if we consider Ū = Ū1,0, we obtain

(2.2) ῡλ,ξ′(x′) = ε2λ
N−2

2 H(ε
2

N−2x′, ξ)
∫

RN

Ūp + o(ε2)

and, away from x′ = ξ′,

(2.3) Uλ,ξ′(x′) = ε2λ
N−2

2 G(ε
2

N−2x′, ξ)
∫

RN

Ūp + o(ε2)

uniformly for x′ on each compact subset of Ωε, where G and H are, respec-
tively, the Green’s function of the Laplacian with the Dirichlet boundary
condition on Ω and its regular part. Now, to simplify notation, we consider
the following function

V (x′) = U1(x′) + U2(x′), x′ ∈ Ωε,

where Ui = Uλi,ξ′i
, i=1, 2, and we put ~ξ = (ξ1, ξ2)∈Ω2 and ~λ = (λ1, λ2)∈R2

+.
Then, we look for solutions of the problem (2.1) of the form

(2.4) v(x′) = V (x′) + η̃(x′), x′ ∈ Ωε,

which for suitable points ξ and scalars λ will have the remainder term η̃ of
small order all over Ωε. Since solutions of (2.1) correspond to stationary
points of its associated energy functional Jε defined by

(2.5) Jε(v) =
1
2

∫
Ωε

|∇v|2 − 1
p+ 1

∫
Ωε

|v|p+1 + εp+1

∫
Ωε

f̃v,

we have that if a solution of the form (2.4) exists, then we should have
Jε(v) ∼ Jε(V ) and the corresponding points

(
~ξ,~λ

)
in the definition of V also

should be “approximately stationary” for the finite-dimensional functional
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(~ξ,~λ) 7→ Jε(V ). Thus, our first goal is to estimate Jε(V ). In order to
establish the expansion, we consider the function w which corresponds to
the unique solution in C0,γ(Ω) of the problem

(2.6)
{
−∆w = f in Ω,

w = 0 on ∂Ω,

and we make the following choice of the points and the parameters: we fix
δ > 0 and we relabel the parameters λi’s as

λi = (a−1
N Λi)

2
N−2 , i = 1, 2,

where aN =
∫

RN Ū
p and Λi ∈ ]δ, δ−1[, for i = 1, 2. We also define the set

(2.7) Mδ ={(~ξ, ~Λ) : |ξ1 − ξ2| > δ, dist(ξi, ∂Ω) > δ; i = 1, 2},

where ~ξ = (ξ1, ξ2) ∈ Ω2 and ~Λ = (Λ1,Λ2) ∈ ]δ, δ−1[ 2.

Lemma 2.1. Let δ > 0 given. The following expansion holds

Jε(V ) = 2CN + ε2Φ(~ξ, ~Λ) + o(ε2)

uniformly in the C1-sense, with respect to (~ξ, ~Λ) in Mδ. Here

(2.8) CN =
1
2

∫
RN

|∇Ū |2 − 1
p+ 1

∫
RN

Ūp+1

and the function Φ is defined by

(2.9) Φ(~ξ, ~Λ) =
1
2

{ 2∑
i=1

Λ2
iH(ξi, ξi)− 2Λ1Λ2G(ξ1, ξ2)

}
+

2∑
i=1

Λiw(ξi).

The proof of the previous lemma is based in (2.2), (2.3) and some esti-
mates established in [4], and follows the general lineaments used to prove
Lemma 3.2 of [12] and Proposition 1 of [9], therefore is omitted.

3. The finite-dimensional reduction

We first introduce some notation to be used in what follows. For functions
u, v defined in Ωε we set

〈u, v〉 =
∫

Ωε

uv.

Let us fix a small number δ > 0 and consider points (~ξ′, ~Λ) in

(3.1) Mε
δ =

{
(~ξ′, ~Λ)∈Ω2

ε×]δ, δ−1[ 2: |ξ′1−ξ′2|>δε, dist(ξ′i, ∂Ωε)>δε; i=1, 2
}
,

where δε = δε−
2

N−2 , ~ξ′ = (ξ′1, ξ
′
2) and ~Λ = (Λ1,Λ2). Since all solutions ϑ

of the problem ∆ϑ + pŪp−1
Λ,0 ϑ = 0 in RN which satisfy |ϑ(x)| < C|x|2−N

belong to span
{∂ŪΛ,0

∂xj
,

∂ŪΛ,0

∂Λ

}
j=1,...,N+1

, see [8], it is convenient to consider,
for i = 1, 2, the following functions:

Z̄ij(x′) =
∂Ūi

∂ξ′ij
(x′), j = 1, . . . , N, Z̄i(N+1)(x

′)=
∂Ūi

∂Λi
(x′),

and their respective H1
0 (Ωε)-projections Zij , namely the unique solutions of{

∆Zij = ∆Z̄ij in Ωε,
Zij = 0 on ∂Ωε.
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In order to simplify notation, we will denote

V = U1 + U2 and V̄ = Ū1 + Ū2.

We start studying a linear problem which is the basis for the reduction of
(2.1): given h ∈ L∞(Ωε), find a function η and constants cij such that

(3.2)


∆η + p|V |p−1η = h+

∑
i,j

cijU
p−1
i Zij in Ωε,

η = 0 on ∂Ωε,

〈η, Up−1
i Zij〉 = 0 ∀i, j.

We want to prove that this problem is uniquely solvable with uniform bounds
in certain appropriate norms. In other words, we want study the linear
operator Lε associated to (3.2), namely

(3.3) Lε(η) = ∆η + p|V |p−1η,

under the previous orthogonality conditions. In order to this goal, we in-

troduce the following L∞-norms with weight. Let ωi =
(
1 + |x′ − ξ′i|2

)−N−2
2

be, i = 1, 2; for a function θ defined in Ωε, we consider the norms

‖θ‖∗ = ‖ (ω1 + ω2)
−σ θ(x′)‖∞ + ‖ (ω1 + ω2)

−σ−1∇θ(x′)‖∞
where σ = 1

2 if 3 ≤ N ≤ 6, σ = 2
N−2 if N ≥ 7, and

‖θ‖∗∗ = ‖ (ω1 + ω2)
−ς θ(x′)‖∞,

where ς = p
2 if 3 ≤ N ≤ 6, ς = 4

N−2 if N ≥ 7. These norms are similar to
those defined in [9] for N ≥ 7, but for 3 ≤ N ≤ 6 we have modified them,
something apparently necessary in that case, since p ≥ 2. Now, we study
the invertibility of the linear operator Lε defined in (3.3). Hence, also is
important to understand its differentiability in the variables (~ξ′, ~Λ) ∈Mε

δ.

Proposition 3.1. Assume that (~ξ′, ~Λ) ∈ Mε
δ. Then there exist ε0 > 0

and C > 0, such that for all 0 < ε < ε0 and for all h ∈ Cα(Ωε), the
problem (3.2) admits an unique solution η ≡ Mε(h). Moreover, the map
(~ξ′, ~Λ, h) 7→ η ≡Mε(h) is of class C1 and satisfies

‖η‖∗ ≤ C‖h‖∗∗ and ‖∇
(~ξ′,~Λ)

η‖∗ ≤ C‖h‖∗∗.

The proof of this proposition follows from a slight variation of the argu-
ments in the proof of Propositions 4.1 and 4.2 in [12] with the necessary
modifications in [14] so that we omit it. In what follows, C represents a
generic positive constant which is independent of ε and of the particular
points (~ξ′, ~Λ) ∈Mε

δ.
Now, we are ready to begin the finite-dimensional reduction. We want to

solve the following nonlinear problem: find a function η̃ such that for certain
constants cij , i = 1, 2, j = 1, . . . , N + 1, one has

(3.4)


∆(V +η̃)+|V +η̃|p−1(V +η̃)−εp+1f̃ =

∑
i,j

cijU
p−1
i Zij in Ωε,

η̃ = 0 on ∂Ωε,

〈η̃, Up−1
i Zij〉 = −〈φ,Up−1

i Zij〉 ∀i, j,
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where φ solves the problem

(3.5)
{
−∆φ = εp+1f̃ in Ωε,

φ = 0 on ∂Ωε.

Note that V + η̃ is a solution of (2.1) if the scalars cij in (3.4) are all zero.
Also, we note that the partial differential equation in (3.4) is equivalent in
Ωε to:

∆η + p|V |p−1η = −Nε(η)−Rε +
∑
i,j

cijU
p−1
i ,

where η = η̃ − φ,

(3.6) Nε(η) = |V+η−φ|p−1(V+η−φ)+−|V |p−1V−p|V |p−1(η−φ)

and

(3.7) Rε = |V |p−1V − Ūp
1 − Ū

p
2 − p|V |

p−1φ.

A first step to solve (3.4) consists of dealing with the following nonlinear
problem: find a function ϕ such that for certain constants cij , i = 1, 2,
j = 1, . . . , N + 1, solves

(3.8)


∆(V +η̃)+|V +η̃|p−1(V +η̃)+−εp+1f̃ =

∑
i,j

cijU
p−1
i Zij in Ωε,

ϕ = 0 on ∂Ωε,

〈ϕ,Up−1
i Zij〉 = 0 ∀i, j,

where η̃=ψ+ϕ−φ, with φ satisfying (3.5), and the function ψ is chosen as

(3.9) ψ = −Mε(Rε)

where Mε is defined as in Proposition 3.1 and Rε is given by (3.7). Actually,
it is easy to check that for points (~ξ′, ~Λ) ∈Mε

δ one has

‖ψ‖∗ ≤ Cε2.

Now, in (3.8) we rewrite the equation of our interest as

∆ϕ+ p|V |p−1ϕ = −Nε(η)− (∆ψ + p|V |p−1ψ +Rε) +
∑
i,j

cijU
p−1
i Zij

where η = ψ + ϕ.

Lemma 3.2. Assume that (~ξ′, ~Λ) ∈Mε
δ. Then there exists C > 0 such that

for all ε > 0 small enough and ‖ϕ‖∗ ≤ 1
4 one has

‖Nε(ψ+ϕ)‖∗∗≤

{
C

(
‖ϕ‖2∗ + ε‖ϕ‖∗ + εp+1

)
if 3 ≤ N ≤ 6,

C
(
ε2(p−2)‖ϕ‖2∗ + εp

2−3p+2‖ϕ‖p∗ + εp
2−p+2

)
if N ≥ 7.

Proof. Note that ‖φ‖∗ ≤ Cεp if 3 ≤ N ≤ 6, ‖φ‖∗ ≤ Cε2 if N ≥ 7 and
‖ψ‖∗ ≤ Cε2. Since ‖ψ + ϕ‖∗ ≤ ‖ψ‖∗ + ‖ϕ‖∗, then for η = ψ + ϕ we have
that ‖η‖∗ < 1. Also we note that

(3.10) Nε(η) = C|V + t̄(η − φ)|p−2(η − φ)2,

with t̄ ∈ ]0, 1[. Hence, if 3 ≤ N ≤ 6 then

|(ω1 + ω2)−
p
2Nε(η)| ≤ C(ω1 + ω2)

p
2
−1‖η − φ‖2∗ ≤ C‖η − φ‖2∗.
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On the other hand, for N ≥ 7, if |η| ≤ 1
2(ω1 + ω2) we use again (3.10) and

we obtain

|(ω1 + ω2)
− 4

N−2Nε(η)| ≤ C(ω1 + ω2)
6−N
n−2 ‖η − φ‖2∗ ≤ Cε

6−N
N−2 ‖η − φ‖2∗.

In another case we obtain directly from (3.6) that

|(ω1 + ω2)
− 4

N−2Nε(η)| ≤ C|(ω1 + ω2)
− 4

N−2 (η − φ)p| ≤ Cε
6−N
N−2

· 2
N−2 ‖η − φ‖p∗.

Combining previous estimates the result follows. �

Now, we deal with the following problem

(3.11)


∆ϕ+ pV p−1ϕ = −Nε(η) +

∑
i,j

cijU
p−1
i Zij in Ωε,

ϕ = 0 on ∂Ωε,

〈ϕ,Up−1
i Zij〉 = 0 ∀i, j,

where η = ψ + ϕ and ψ is the function defined in (3.9).

Proposition 3.3. Assume that (~ξ′, ~Λ) ∈Mε
δ. Then there exists C > 0, such

that for all ε > 0 small enough there exists an unique solution ϕ = ϕ(~ξ′, ~Λ)
to problem (3.11). Moreover, the map (~ξ′, ~Λ) 7→ ϕ(~ξ′, ~Λ) is of class C1 for
the ‖ · ‖∗-norm and it satisfies

||ϕ||∗ ≤ Cε2 and ‖∇
(~ξ′,~Λ)

ϕ‖∗ ≤ Cε2.

Proof. Let us set

Fr = {ϕ ∈ H1
0 (Ωε) : ‖ϕ‖∗ ≤ rε2},

with r > 0 a constant to be fixed later. We define the map Aε : Fr → H1
0 (Ωε)

as
Aε(ϕ) = −Mε

(
Nε(ψ + ϕ)

)
where Mε is the operator defined in Proposition 3.1. Since ψ = −Mε(Rε),
solving (3.11) is equivalent to finding a fixed point ϕ for Aε. From Propo-
sition 3.1 and Lemma 3.2, we deduce that if ϕ ∈ Fr and ε > 0 is small
enough, then

‖Aε(ϕ)‖∗ ≤ rε2

for a suitable choice of r = r(N) which we consider fixed from now on. Note
that for ϕ1, ϕ2 ∈ Fr we have from Lemma 3.2

‖Aε(ϕ1)−Aε(ϕ2)‖∗ ≤ C‖Nε(ψ + ϕ1)−Nε(ψ + ϕ2)‖∗∗ ≤ Cεp‖ϕ1 − ϕ2‖∗,
for all N ≥ 3. It follows that, for ε > 0 small enough, the map Aε is a
contraction ‖ · ‖∗ in Fr. Therefore, Aε has a fixed point in Fr.

Concerning differentiability properties, let us recall that η = ψ + ϕ is
defined by the relation

B(~ξ′, ~Λ, η) ≡ η +Mε

(
Nε(ψ + ϕ)

)
= 0.

We see that

DηB(~ξ′, ~Λ, η)[θ] = θ +Mε

(
θ DηNε(ψ + ϕ)

)
≡ θ + M̃(θ),

and check
‖M̃(θ)‖∗ ≤ Cε‖θ‖∗.
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This implies that for ε small, the linear operator DηB(~ξ′, ~Λ, η) is invertible
in the space of the continuous functions in Ωε with bounded ‖ · ‖∗-norm,
with uniformly bounded inverse depending continuously on its parameters.

Now, let us consider the differentiability with respect to the ~ξ′ variable
and by simplicity we write ∂

∂ξ′ij
= ∂ξ′ij

. Then

∂ξ′ij
B(~ξ′, ~Λ,η)=∂ξ′ij

Mε(Nε(ψ+ϕ))+Mε(∂ξ′ij
Nε(ψ+ϕ))+Mε(DηNε(ψ+ϕ)∂ξ′ij

ψ).

It is clear that all expressions which define to ∂ξ′ij
B(~ξ′, ~Λ, η) depend

continuously on their parameters. Applying the implicit function theorem
we obtain that ϕ(~ξ′, ~Λ) is a C1-function in L∞∗ . Besides, we get

∂ξ′ij
ϕ = −

(
DηB(~ξ′, ~Λ, η)

)−1(
∂ξ′ij

B(~ξ′, ~Λ, η)
)
,

and using the first part of this proposition, the estimates in the previous
lemmas, Proposition 3.1 and the fact that (~ξ, ~Λ) ∈Mε

δ, we conclude

‖∂ξ′ij
ϕ‖∗≤C

(
‖Nε(ψ+ϕ)‖∗∗+‖∂ξ′ij

Nε(ψ+ϕ)‖∗∗+‖DηNε(ψ+ϕ)∂ξ′ij
ψ‖∗∗ ≤Cε2

Similarly, we can analyze differentiability of B with respect to ~Λ. This
finishes the proof. �

4. The reduced functional

Now we are ready to solve the full problem. Let us consider (~ξ′, ~Λ) ∈Mε
δ

whitMε
δ defined by (3.1). All estimates obtained below will be uniform on

these points. Let ϕ = ϕ(~ξ′, ~Λ) be the unique solution, given by Proposition
3.3, of the problem (3.8) with η̃ = ψ + ϕ − φ, where ϕ solves (3.9) and φ

solves (3.5). Note that if ~ξ = ε
2

N−2 ~ξ′ ∈ Ω2 and ~λ = (λ1, λ2) ∈ R2
+ so that

cij = 0 for all i, j, then a solution of (1.1) is

u(x) = −ε−1v(ε−
2

N−2x), x ∈ Ω,

where v = V + ψ + ϕ(~ξ′, ~Λ)− φ. Hence, u will be a critical point of

Iε(u) =
1
2

∫
Ω
|∇u|2 − 1

p+ 1

∫
Ω
|u|p+1 − ε

∫
Ω
fu.

while v will be one of Jε given by (2.5). Then it is convenient to consider
the following functions defined in Ω:

Ûi(x) = ε−1Ui(ε
− 2

N−2x) = Uλε
i ,ξi

(x), ψ̂(x) = ε−1ψ(ε−
2

N−2x),

ϕ̂(~ξ, ~Λ)(x) = ε−1ϕ(~ξ′, ~Λ)(ε−
2

N−2x) and φ̂(x) = ε−1φ(ε−
2

N−2x).

Note that Ûi = Uλiε,ξi
where λiε = (cNΛ2

i ε)
2

N−2 ∈ R+ and ~ξ = ε
2

N−2 ~ξ′, with
(~ξ, ~Λ) ∈ Mδ defined by (2.7). Now, let us put Û = Û1 + Û2. Consider now
the functional

(4.1) I(~ξ, ~Λ) ≡ Iε
(
Û + ψ̂ + ϕ̂(~ξ, ~Λ)− φ̂

)
.

It is easy to check that

I(~ξ, ~λ) = Jε

(
V + ψ + ϕ(~ξ′, ~Λ)− φ

)
.
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Then, putting η̃ = ψ + ϕ(~ξ′, ~Λ)− φ, one shows that DJε(V + η̃) [ϑ] = 0 for
all ϑ ∈ Hε, where Hε = {ϑ ∈ H1

0 (Ωε) : 〈ϑ, V p−1
i Zij〉 = 0 ∀i, j}. Also one has

∂V

∂ξ′lk
= Zlk + o(1) ∀l, k; ∂V

∂Λl(N+1)
= Zl(N+1) + o(1) ∀l,

with o(1) → 0 in the ‖ · ‖∗-norm as ε → 0. Then from Proposition 3.3 we
obtain the following basic result:

Lemma 4.1. The function u = Û + ψ̂ + ϕ̂(~ξ, ~Λ) − φ̂ is a solution of the
problem (1.1) if only if (~ξ, ~Λ) is a critical point of I.

Next step is then to give an asymptotic estimate for I(~ξ, ~Λ). Put

(4.2) σf =
∫

Ω
f(x)w(x) dx,

where w is the solution of (2.6). Then

Proposition 4.2. The following expansion holds:

(4.3) I(~ξ, ~Λ) = 2CN + ε2
{
Φ(~ξ, ~Λ) + σf

}
+ o(ε2)θ(~ξ, ~Λ)

uniformly in the C1-sense with respect to (~ξ, ~Λ) ∈Mδ, where θ is a bounded
uniformly function independently of ε > 0. Here CN is the constant given
by (2.8) and Φ is the function given by (2.9).

Proof. The first step to achieve our goal is to prove that

(4.4) I(~ξ, ~Λ)− Iε(V̂ + ψ̂ − φ̂) = o(ε2)

and

(4.5) ∇
(~ξ,~Λ)

(
I(~ξ, ~Λ)− Iε(V̂ + ψ̂ − φ̂)

)
= o(ε2).

Let us set ϑ = V + ψ − φ and notice that

I(~ξ, ~Λ)− Iε(V̂ + ψ̂ − φ̂) = −
∫ 1

0
t

(∫
Ωε

Nε(ψ+ϕ)ϕ
)
dt

+
∫ 1

0
t

(∫
Ωε

p
(
|V |p−1− |ϑ+ tϕ|p−1

)
ϕ2

)
dt.

Now, differentiating with respect to the ~ξ variable, we obtain

D~ξ

(
I(~ξ, ~Λ)−Iε(ϑ̂)

)
= −ε−

2
N−2

∫ 1

0
t

∫
Ωε

p∇~ξ′

[
|ϑ+tϕ|p−1ϕ2−|V |p−1ϕ2

]
dt

−ε−
2

N−2

∫
Ωε

∇~ξ′

(
Nε(ψ+ϕ)ϕ

)
.

Keeping in mind that ‖Nε(ψ+ϕ)‖∗+‖ϕ‖∗+‖ψ‖∗+‖∇ξ′i
ϕ‖∗+‖∇ξ′1

ψ‖∗ ≤ O(ε2),
we get that (4.4) and (4.5) hold true.

A second step is to prove that

(4.6) Iε(V̂ + ψ̂ − φ̂)− Iε(V̂ − φ̂) = o(ε2)

and

(4.7) ∇
(~ξ,~Λ)

(
Iε(V̂ + ψ̂ − φ̂)− Iε(V̂ − φ̂)

)
= o(ε2).
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Put η = V − φ and, by the fundamental calculus theorem, note that

(4.8) Iε(η̂ + ψ̂)− Iε(η̂) =
∫ 1

0
(1− t)

(∫
Ωε

p|η + tψ|p−1ψ2−
∫

Ωε

|∇ψ|2
)
dt

+
∫

Ωε

(
|V |p− |η|p− p|V |p−1φ

)
ψ +

∫
Ωε

Rεψ.

Now, differentiating with respect to ~ξ variables, we obtain

D~ξ

(
Iε(η̂ + ψ̂)−Iε(η̂)

)
= ε−

2
N−2

∫ 1

0
(1− t)

∫
Ωε

∇~ξ′

(
p|η + tψ|p−1ψ2−|∇ψ|2

)
dt

+ε−
2

N−2

∫
Ωε

∇~ξ′

(
|V |p− |η|p− p|V |p−1φ

)
ψ

+ε−
2

N−2

∫
Ωε

(
|V |p− |η|p− p|V |p−1φ

)
∇~ξ′

ψ

+ε−
2

N−2

∫
Ωε

∇~ξ′
Rεψ + ε−

2
N−2

∫
Ωε

Rε∇~ξ′
ψ.

Since ‖Rε‖∗∗+‖∇ξ′i
Rε‖∗∗+‖φ‖∞+‖ψ‖∗+‖∇ξ′i

ψ‖∗ ≤ O(ε2) and ‖φ‖∗ ≤ O(εp)
if 3 ≤ N ≤ 6, ‖φ‖∗ ≤ O(ε2) if N ≥ 7, one has that (4.6) and (4.7) hold.

Finally, only we need hold the following two estimates

(4.9) Iε(V̂ − φ̂)−Iε(V̂ ) = ε2σf + o(ε2),

where σf is given by (4.2), and

(4.10) D
(~ξ,~Λ)

(
Iε(V̂ − φ̂)−Iε(V̂ )

)
= o(ε2).

Now, we have that

(4.11) Iε(V̂ − φ̂)−Iε(V̂ ) =
∫ 1

0

( ∫
Ωε

|∇φ|2 −
∫

Ωε

p|V − tφ|p−1φ2

)
dt

+
∫

Ωε

(
Ūp

1 + Ūp
2 − |V − tφ|

p
)
φ.

Note that∫ 1

0
t

∫
Ωε

|∇φ|2 dt=
∫

Ωε

|∇φ|2 = εp+1

∫
Ωε

f̃φ = ε2
∫

Ω
fw = ε2σf ,

and since ‖φ‖∞ ≤ O(εp+1), we have that∣∣∣∣ ∫
Ωε

p|V − tφ|p−1φ2

∣∣∣∣≤ Cε4 ∫
Ωε

(ω1 + ω2)p−1 ≤ o(ε2).

On the other hand, it is not difficult to check that∣∣∣∣∫
Ωε

( 2∑
i=1

Ūp
i−|V −tφ|

p

)
φ

∣∣∣∣= ∣∣∣∣∫
Ωε

Rεφ+
∫

Ωε

(
|V |p−|V −tφ|p−p|V |p−1φ

)
φ

∣∣∣∣≤o(ε2).
The above estimates hold (4.9). Now, from (4.11) we get

D~ξ

(
Iε(V̂ − φ̂)−Iε(V̂ )

)
=ε−

2
N−2

∫ 1

0
t

∫
Ωε

p|V − tφ|p−2∇~ξ′
V φ2 dt

+ε−
2

N−2

∫
Ωε

∇~ξ′

(
Ūp

1 + Ūp
2 − |V − tφ|

p
)
φ,
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but since ‖φ‖∞ ≤ O(εp+1), it is easy to check that (4.10) is truth. Similarly
we hold results for the differentiability with respect to ~Λ. �

Remark 4.3. Lemma 2.1 and previous proposition yield

(4.12) ∇
(~ξ,~Λ)
I(~ξ, ~Λ) = ε2∇

(~ξ,~Λ)
Φ(~ξ, ~Λ) + o(ε2)∇

(~ξ,~Λ)
θ(~ξ, ~Λ),

uniformly with respect to (~ξ, ~Λ) ∈ Mδ, where θ and ∇
(~ξ,~Λ)

θ are bounded
uniformly functions, independently of all ε > 0 small. �

5. An auxiliary function on the exterior domain

In this section we consider the domain Ω defined in (1.2) with P = 0,
µ > 0 small and fixed and we assume that f ∈ C0,γ( Ω ), for some 0 < γ < 1,
with minx∈Ω f(x) = α > 0. Let w be the unique solution in C2,γ(Ω) of
problem (2.6), then it is easy to check that wµ(x) = µ−2w(µx) is the unique
C2,γ(µ−1Ω) solution of the problem{

−∆wµ = f̂ in µ−1Ω
wµ = 0 on ∂(µ−1Ω),

where f̂(x) = f(µx) for x ∈ (µ−1Ω).
Now, we consider the exterior domain

E = RN \B(0, 1)

and we denote by GE and HE , respectively, the Green’s function on E and
its regular part. By convenience, in the set:

V =
{
(x, y) ∈ RN × RN : GE(x, y)−H

1
2
E(x, x)H

1
2
E(y, y) > 0

}
∩ (µ−1Ω)

we define the function:

ΦE(x, y) =
1
2

{
HE(x, x)w2

µ(y) + 2GE(x, y)wµ(x)wµ(y) +HE(y, y)w2
µ(x)

G2
E (x, y)−HE(x, x)HE(y, y)

}
.

Then, if x and y are variable vectors whose magnitudes remain constant and
we differentiate ΦE with respect to the angle θ formed between them, we
obtain

∂

∂θ
ΦE(x, y) = F (x, y, θ) sin θ

for 0 < θ < π. Since F (x, y, θ) > 0 for all θ ∈]0, π[, (x, y) ∈ V, we have that
for given magnitudes |x| and |y|, ΦE maximizes its value when θ = π, is to
say when x and y have opposite directions. In the rest of this section we
assume that this is the situation.

5.1. A first step to the auxiliary function: a radial case. In this
subsection we consider a fixed constant T > 0 and the domain

Ω := Aµ = {x ∈ RN : 1 < |x| < µ−1} and f ≡ 1.

We write R := R(µ, T ) = µ−1T so that wµ ∈ C2,γ
(
Aµ

)
is defined by

wµ(x) := WR(x) =
1

2N

{
R2 − 1
R2−N − 1

|x|2−N − |x|2 +R2−N 1−RN

R2−N − 1

}
.
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From the maximum principle we have that WR is strictly positive in Aµ.
Besides, it achieves its maximum value in

x∗µ ∈ RN such that |x∗µ| = R∗
µ =

(
(N − 2)RN−2(R2 − 1)

2(RN−2 − 1)

) 1
N

.

Note that R∗
µ → +∞ as µ → 0. Now we consider an unitary vector e and

we put x = se, y = −te with s, t > 1. Then

2βNΦE(x, y) := 2βNΦR(x, y)

= 2βN Φ̃R(s, t)

=
W̃2

R (t)

(s2−1)N−2 +2

{
1

(s+t)N−2−
1

(st+1)N−2

}
W̃ 2

R (s)W̃ 2
R (t)+

W̃2
R (s)

(t2−1)N−2(
1

(s+t)N−2−
1

(st+1)N−2

)2

− 1

[(s2−1)(t2−1)]N−2

,

where W̃R(r) = WR(re), for 1 < r < R.

Remark 5.1. We define in ]1,+∞[×]1,+∞[ the following function:

Ψ̃(s, t) =
1

(s+ t)N−2
− 1

(st+ 1)N−2
− 1

[(s2 − 1)(t2 − 1)]
N−2

2

.

From (5.1), it is easy to check that we can choose µ0 small enough such that
for all 0 < µ < µ0 there are 1 < k∗ < K < R∗

µ0
independent of µ, verifying

Ψ̃(k∗, k∗) = 0, Ψ̃(K,K) = max(x,y)∈E Ψ̃(|x|, |y|). Moreover, k∗ is the unique
solution in ]1,+∞[ of the equation

22−N

sN−2
=

(s2 + 1)N−2 + (s2 − 1)N−2

(s4 − 1)N−2

and K is the only one solution in ]1,+∞[ of

21−N

sN
=

(s2 + 1)N−1 + (s2 − 1)N−1

(s4 − 1)N−1
. �

Now, it is not difficult to prove

Lemma 5.2. The function Φ̃R achieves only one minimum value at a crit-
ical point of the form (ρR, ρR) ∈ ]k∗,K[2.

5.2. General case. Let D the smooth and bounded domain in RN , N ≥ 3,
which define to Ω in (1.2). In this subsection we consider the values m,M as
follows: m is the radius of the biggest ball centered at the origin contained in
D and M is the radius of the smallest ball centered at the origin containing
to D. Let w be the unique solution C2,γ(Ω) of the problem (2.6). By the
maximum principle, we check that

zm(x) ≤ w(x) ≤ zM (x), ∀µ < |x| < m,

where zm(x) = αµ2WR1(µ
−1x) and zM (x) = βµ2WR2(µ

−1x), with
R1 = µ−1m and R2 = µ−1M . Hence,

ΦR1(µ
−1x, µ−1y) ≤ ΦE(µ−1x, µ−1y) ≤ ΦR2(µ

−1x, µ−1y), ∀µ < |x|, |y| < m.
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Since the function Ψ̃(s, s) defined in Remark 2 is decreasing in its diagonal
for values of s greater that K and goes to 0, then is not difficult to show
that the system

Φ̃R1(s, s)
Φ̃R2(K,K)

≥ 1 and s ≥ K

posses solution, we say k∗, when we have chosen µ > 0 sufficiently small but
fixed. Indeed, if we put β = maxx∈Ω f(x) and (αm2−βM2)KN−2+βM2 6= 0
then we can chose in the limit for µ

k∗ = max
{
K,

{( αm2KN−2

(αm2 − βM2)KN−2 + βM2

)
+

} 1
N−2

}
.

If (αm2 − βM2)KN−2 + βM2 = 0, we change K by a value a few greater
that K in the definition of k∗. Then the following lemma is obtained

Lemma 5.3. The function ΦE(x, y) achieves a relative minimum value
in a critical point (xµ, yµ) with xµ and yµ having opposite directions, and
(|xµ|, |yµ|) ∈ ]k∗, k∗[ 2. Moreover, |xµ| and |yµ| belong to a compact region
fully contained in ]k∗, k∗[ 2, which is independent of all µ > 0 small enough.

Let
Q = {(x, y) ∈ V ×V : k∗ < |x|, |y| < k∗},

We define the following value

(5.1) cµ = ΦE(xµ, yµ) = min
(x,y)∈Q

ΦE(x, y).

Let δµ > 0 a suitable small value such that the level set

{(x, y) ∈ Q : ΦE(x, y) = δµ}

is a closed curve and that ∇ΦE(x, y) does not vanish on it. Let us set

(5.2) Υµ = {(x, y) ∈ Q : ΦE(x, y) < δµ}.

Thus, on this region we have that ΦE(x, y) < δµ and if (x, y) ∈ ∂Υµ then one
of the following two situations happen: either there is a tangential direction
τ to ∂Υµ such that ∇ΦE(x, y) · τ 6= 0; or x and y lie in opposite directions,
ΦE(x, y) = δµ and ∇ΦE(x, y) 6= 0, being points orthogonally outwards to
Υµ. Moreover, for µ0 > 0 small enough fixed

(5.3) Υµ̂ ⊂⊂ Υµ ⊂⊂ Q for all 0 < µ̂ < µ < µ0.

Let us consider now the exterior domain

Eµ = RN \B(0, µ).

and we denote by Gµ and Hµ, respectively, the Green’s function on Eµ

and its regular part, then Gµ(x, y) = µ2−NGE(µ−1x, µ−1y) and Hµ(x, y) =
µ2−NHE(µ−1x, µ−1y). In particular, if we put

(5.4) Σµ
Ω = µΥµ,

with Υµ defined by (5.2), then Σµ
Ω corresponds precisely to the set where

ΦE(µ−1x, µ−1y) < δµ, with δµ defined by (5.2). Moreover, since

G(x, y) = Gµ(x, y) +O(1) ∀(x, y) ∈ µQ,
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where the quantity O(1) is bounded independently of all small µ, in the
C1-sense, and the same is true for the function H, we have that the function

(5.5) Φ(x, y) =
1
2

{
H(x, x)w2(y) + 2G(x, y)w(x)w(y) +H(y, y)w2(x)

G2(x, y)−H(x, x)H(y, y)

}
satisfies in the region µQ the following relation

(5.6) Φ(x, y) = µN+2ΦE(µ−1x, µ−1y) + o(1)

where the quantity o(1) is bounded independently of all small number µ > 0
in the C1-sense. Besides, o(1)→ 0 as µ→ 0.

6. The min-max and the proof of the main result

In this section µ > 0 is a fixed small enough number and Ω is the domain
given in (1.2) with P = 0. According to the results previously obtained,
(4.1) and (4.12), our problem reduces to that of finding a critical point for

(6.1) Φ(~ξ, ~Λ) =
1
2

{
2∑

i=1

Λ2
iH(ξi, ξi)− 2Λ1Λ2G(ξ1, ξ2)

}
+

2∑
i=1

Λiw(ξi),

where ~ξ = (ξ1, ξ2) ∈ Ω2 and ~Λ = (Λ1,Λ2) ∈ R2
+. Here we consider the

function Φ defined over the class Σµ
Ω × R2

+, where Σµ
Ω is defined by (5.4).

Indeed Φ has some singularities on this class which we can avoid by replacing
the term G(ξ1, ξ2) in (6.1) by

(6.2) G|M (ξ1, ξ2) =
{
G(ξ1, ξ2) if G(ξ1, ξ2) ≤M,

M if G(ξ1, ξ2) > M,

where M is a big number. Hence, we can work with the functional modified,
which by simplicity we still call Φ.

For every ~ξ ∈ Σµ
Ω we choose d(~ξ) =

(
d1(~ξ), d2(~ξ)

)
∈ R2 being a vector

which defines a negative direction of the associated quadratic form with Φ.
Such direction exists since G2(x, y) − H(x, x)H(y, y) > 0 over Σµ

Ω. More
precisely, for fixed ~ξ0 ∈ Σµ

Ω, the function

Φ(~ξ0, ~d ) =
1
2

{
2∑

i=1

d2
iH(ξ0,i, ξ0,i)− 2d1d2G(ξ0,1, ξ0,2)

}
+

2∑
i=1

diw(ξ0,i),

regarded as a function of ~d = (d1, d2) only, with d1, d2 > 0, has a unique
critical point d̄(~ξ0) =

(
d̄1(~ξ0), d̄2(~ξ0)

)
given by

d̄i(~ξ0) =
H(ξ0,j , ξ0,j)w(ξ0,i) +G(ξ0,i, ξ0,2)w(ξ0,j)
G2(ξ0,i, ξ0,j)−H(ξ0,i, ξ0,i)H(ξ0,j , ξ0,j)

, i, j = 1, 2, i 6= j.

In particular,

(6.3) Φ
(
~ξ0, d̄(~ξ0)

)
= Φ

(
~ξ0

)
where ΦΩ is the function given by (5.5). Then we simply choose d(~ξ) = d̄(~ξ).
Let xµ and yµ the points given by (5.1). From now on we consider ρ̂µ = |xµ|
and ρ̄µ = |yµ|. Put

S = {(x, y) ∈ Q2 : (|x|, |y|) = (µρ̂µ, µρ̄µ)}.
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Let K be the class of all continuous functions

κ : S× I0 × [0, 1]→ Σµ
Ω × R2

+

such that
1)κ(~ξ, σ0, t)=

(
~ξ, σ0d(~ξ)

)
and κ(~ξ, σ−1

0 , t)=
(
~ξ, σ−1

0 d(~ξ)
)

for all ~ξ∈S, t∈ [0, 1].
2)κ(~ξ, σ, 0) =

(
~ξ, σd(~ξ)

)
for all (~ξ, σ) ∈ S× I0, where I0 = [σ0, σ

−1
0 ], being

σ0 a small number to be chosen later.
Then we define the min-max value as

(6.4) c(Ω) = inf
κ∈K

sup
(~ξ,σ)∈S×I0

Φ
(
κ(~ξ, σ, 1)

)
.

In what follows we will prove that c(Ω) is a critical value of Φ.

Lemma 6.1. For all sufficiently small µ > 0, the following estimate holds:

c(Ω) ≤ µN+2cµ + o(1)

where o(1)→ 0 as µ→ 0, and cµ is the value defined in (5.1).

Proof. For all t ∈ [0, 1], we consider the test path defined as κ(~ξ, σ, t) =(
~ξ, σd(~ξ)

)
. Maximizing Φ

(
~ξ, σd(~ξ)

)
in the variable σ, we note that this

maximum value is attained at σ = 1, because our choice of the vector d(~ξ).
Hence, from (6.3), we have that

max
σ∈I0

Φ
(
~ξ, σd(~ξ)

)
= Φ

(
~ξ, d(~ξ)

)
.

On the other hand, by definition of S, we see that

ΦE(µ−1ξ1, µ
−1ξ2) = cµ.

Then the conclusion is immediate from (5.6) and the definition of c(Ω). �

In order to prove that c(Ω) is indeed a critical point of Φ we need an inter-
section lemma. The idea behind this result is the topological continuation of
the set of solution of an equation (see [15]). For every (~ξ, σ, t) ∈ S×I0×[0, 1]
we denote κ(~ξ, σ, t) =

(
ξ̃(ξ, σ, t), Λ̃(~ξ, σ, t)

)
∈ Σµ

Ω × R2
+, with ξ̃ = (ξ̃1, ξ̃2),

Λ̃ = (Λ̃1, Λ̃2) and we define the set

M = {(~ξ, σ) ∈ S× I0 : Λ̃1(~ξ, σ, 1) · Λ̃2(~ξ, σ, 1) = 1}.

The following lemma has been probed by Del Pino, Felmer and Musso in
Lema 6.2 of [13], therefore here the proof is omitted.

Lemma 6.2. For every open neighborhood W of M in S×I0, the projection
g : W → S induces a monomorphism in cohomology, that is

g∗ : H∗(S)→ H∗(W )

is injective.

Proposition 6.3. There is a constant A > 0 such that

sup
(~ξ,σ)∈S×I0

Φ
(
κ(~ξ, σ, 1)

)
≥ −A, ∀κ ∈ K.
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Proof. Note that ~ξ ∈ Σµ
Ω implies that ξi ∈ B(0, µk∗)\B(0, µk∗), for i = 1, 2,

with ρ̂µ, ρ̄µ ∈ ]k∗, k∗[ for any µ sufficiently small. Thus, we can find a number
δ0 > 0 such that if |ξ1 − ξ2| < δ0, then ξ1 · ξ2 > 0. Let A0 > 0 be such that
G(x, y) ≥ A0 implies that |x− y| < δ0.

We argue by contradiction. Let us assume that for certain κ ∈ K

Φ
(
κ(~ξ, σ, 1)

)
≤ −A0 ∀(~ξ, σ) ∈ S× I0.

This implies that for all (~ξ, σ) ∈M, (ξ̃, σ̃) =
(
ξ̃(~ξ, σ, 1), Λ̃(~ξ, σ, 1)

)
, we have

2G(ξ̃1, ξ̃2)−
(
Λ̃2

iH(ξ̃1, ξ̃1) + 2Λ̃1w(ξ̃1 +H(ξ̃2, ξ̃2) + 2Λ̃2w(ξ̃2)
)
≥ 2A0

and since H(ξ̃i, ξ̃i) > 0 and w(ξ̃i) > 0, we conclude that if we take a small
neighborhood W of M in S× I0, then for every (~ξ, σ) ∈W one has

G
(
ξ̃(ξ, σ, 1)

)
≥ A0.

Hence |ξ̃1 − ξ̃2| < δ0. Let us fix points ζi ∈ RN , i = 1, 2, such that |ζ1| = ρ̂µ

and |ζ2| = ρ̄µ, then ~ζ = (ζ1, ζ2) ∈ S. Denoting κ1 = κ( · , 1), we see that
because of the above conclusion κ1(W ) ⊂

(
Σµ

Ω \ T (~ζ)
)
× R2

+, where T (~ζ) ={
(t1ζ1, t2ζ2) : t1, t2 ∈ ]k,K[

}
.

Consider the map s : Σµ
Ω × R2

+ → S defined componentwise as s(~ξ, ~Λ) =
µ(ρ̂µξ1/|ξ1|, ρ̄µξ2/|ξ2|). Then κ∗0◦s∗ :H∗(S)→H∗(S×I0), where κ0 = κ( · , 0)
is an isomorphism. By the homotopy axiom we deduce then that κ∗1 ◦ s∗ is
also an isomorphism. We consider the following commutative diagram:

H∗(S× I0)
κ∗1←− H∗(Σµ

Ω × R2
+) κ∗←− H∗(S)

i∗1↓ i∗2↓ i∗3↓
H∗(W )

κ̃∗1←− H∗(κ1(W )) s̃∗←− H∗(S \ {~ζ}),
where i1, i2 and i3 are inclusion maps, κ̃1 = κ1|W y s̃ = s|κ1(W ). From
Lemma 6.2 we have that i∗1 is a monomorphism which is a contradiction
with the fact that H2N (S \{~ζ})= 0. Thus, the result follows. �

In order to prove that the min-max number (6.4) is a critical value of
Φ, we need care about the fact the domain in which Φ is defined is not
necessarily closed for the gradient flow of Φ. The following lemma appears
in this direction.

Lemma 6.4. Assume that µ > 0 is a small enough number. Let (ξn,Λn) ∈
Σµ

Ω × R2
+ be a sequence such that

(6.5) ∇~ΛΦ(~ξn, ~Λn)→ 0.

Then each component of ~Λn is bounded above and below by positive constants.

Proof. Note that Σµ
Ω ⊂⊂ Ω. Hence w(ξi) > 0, i = 1, 2, for all ~ξ ∈ Σµ

Ω. We
put ~ξn = (ξ1,n, ξ2,n) and ~Λn = (Λ1,n,Λ2,n). Then (6.5) is equivalent to

Λi,nH(ξi,n, ξi,n)− Λj,nG(ξi,n, ξj,n) + w(ξi,n)→ 0; i, j = 1, 2, i 6= j.

It is clear that |~Λn| → 0 or Λi,n → 0 and Λj,n → C, with C different of
zero and i 6= j, cannot happen. Hence, we can suppose that |~Λn| → +∞.
Since H and G remain uniformly controlled, (µ is fixed) we easily see that
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Λ1,n → +∞ and Λ2,n → +∞. We put Λ̃i,n = Λi,n

|~Λn|
, for i = 1, 2, and passing to

a subsequence, if necessary, we may assume that this sequence it approaches
a nonzero vector (Λ̂1, Λ̂2) with Λ̂i 6= 0 for i = 1, 2. It follows that

Λ̃i,nH(ξi,n, ξi,n)− Λ̃j,nG(ξ1,n, ξ2,n) +
w(ξi,n)

|~Λn|
→ 0; i, j = 1, 2, i 6= j.

For a suitable subsequence, we obtain for some (ξ̄1, ξ̄2) ∈ Σµ
Ω the system

Λ̂1

Λ̂2

=
G(ξ̄1, ξ̄2)
H(ξ̄1, ξ̄1)

and
Λ̂2

Λ̂1

=
G(ξ̄1, ξ̄2)
H(ξ̄2, ξ̄2)

.

Hence
G2(ξ̄1, ξ̄2)−H(ξ̄1, ξ̄1)H(ξ̄2, ξ̄2) = 0

which is a contradiction, since the quantity on the left hand side in the
previous equality is strictly positive when µ > 0 is chosen sufficiently small.
This finishes the proof. �

Proposition 6.5. Let us assume that µ > 0 is an small enough number.
Then the functional Φ satisfies the (PS) condition in the region Σµ

Ω×R2
+ at

the level c(Ω) given in (6.4).

Proof. Let us consider a sequence (~ξn, ~Λn) ∈ Σµ
Ω × R2

+ such that

∇~ΛΦ(~ξn, ~Λn)→ 0 and ∇τ
~ξ
Φ(~ξn, ~Λn)→ 0,

where ∇τ
~ξ
Φ corresponds to the tangential gradient of Φ to ∂Σµ

Ω×R2
+ in case

that ~ξn it is approaching to ∂Σµ
Ω or the full gradient in otherwise. From

the previous lemma, the components of ~Λn are bounded above and below
by positive constants, so that we may assume, passing to a subsequence if
necessary, that (~ξn, ~Λn)→ (~ξ0, ~Λ0) ∈ Σµ

Ω ×R2
+ and Φ(~ξn, ~Λn)→ c(Ω). Then

∇~ΛΦ(~ξ0, ~Λ0) = 0.

Observe that if ~ξ0 ∈ int(Σµ
Ω) then ~ξ0 is a critical point of Φ. We assume the

opposite, this is that ~ξ0 ∈ ∂Σµ
Ω. Then

ΦE(µ−1ξ0,1, µ
−1ξ0,2) = δµ.

Firstly we note that ∇~ΛΦ(~ξ0, ~Λ0) = 0, then ~Λ0 satisfies

Λ0,i =
H(ξ0,j , ξ0,j)w(ξ0,i) +G(ξ0,i, ξ0,j)w(ξ0,j)
G2(ξ0,i, ξ0,j)−H(ξ0,i, ξ0,i)H(ξ0,j , ξ0,j)

, i, j = 1, 2, i 6= j.

Substituting these values in Φ, from (6.3) we obtain

c(Ω) = Φ(~ξ0, ~Λ0) = Φ(~ξ0)

and from (5.6) we deduce that

c(Ω) = µN+2ΦE(µ−1ξ0,1, µ
−1ξ0,2) + θ(~ξ0),

where θ(~ξ0) is small in the C1 sense, as µ > 0 becomes smaller. Hence,
∇~ξ

Φ(~ξ0, ~Λ0) · τ ∼ 0 for any tangential direction τ to ∂Σµ
Ω. Thus, from

the analysis in the previous section, we have that ξ0,1, ξ0,2 are in opposite
directions, Φ(~ξ0, ~Λ0) ∼ µN+2δµ and ∇~ξ

Φ(~ξ0, ~Λ0) must be away from 0. Then
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choosing τ parallel to ∇~ξ
Φ(~ξ0, ~Λ0) we obtain that ∇~ξ

Φ(~ξ0, ~Λ0) · τ must to be

away from 0, which is a contradiction. Then, the point ~ξ0 ∈ int(Σµ
Ω), which

implies that the (PS) condition holds and the results follows. �

Now we are in conditions to complete the proof of Theorem 1.1
Proof of Theorem 1.1. Let us consider the domain Σb

a = Σµ
Ω × [a,b]2

with a,b to be choose later. Then the functional I given by (4.1) is well
defined on Σb

a except on the set

∆ρ = {~ξ, ~Λ) ∈ Σb
a : |ξ1 − ξ2| < ρ}.

From (4.3) we can extend I to all Σb
a by extending Φ as in (6.2), and keep

relations (4.3) and (4.12) over Σb
a .

From Proposition 6.5, Φ satisfies the (PS) condition. Then there exist
constants b > 0, c > 0 and %0 > 0, such that if 0 < % < %0, and (~ξ, ~Λ) ∈ Σµ

Ω

satisfying |~Λ| ≥ b and c(Ω)−2% ≤ Φ(~ξ, ~Λ) ≤ c(Ω)+2%, then |∇Φ(~ξ, ~Λ)| ≥ c.
We now use the min-max characterization of c(Ω) to choose κ ∈ K so that

c(Ω) ≤ sup
(~ξ,σ)∈S×I0

Φ
(
κ(~ξ, σ, 1)

)
≤ c(Ω) + %.

By making a small and b large if necessary, we can assume that κ(~ξ, σ, 1) ∈
Σb/2

2a ⊂ Σb
a for all (~ξ, σ) ∈ S× I0.

Consider now η : Σb
a × [0,+∞]→ Σb

a being the solution of the equation
η̇ = −h(η)∇I(η) with initial condition η(~ξ, ~Λ, 0) = (~ξ, ~Λ). Here the function
h is defined in Σb

a so that h(~ξ, ~Λ) = 0 for all (~ξ, ~Λ) with Φ(~ξ, ~Λ) ≤ c(Ω)− 2%
and h(~ξ, ~Λ) = 1 if Φ(~ξ, ~Λ) ≥ c(Ω)− %, satisfying 0 ≤ h ≤ 1.

Hence, by the choice of a y b, and bearing in mind (4.3) and (4.12), we
have that η(~ξ, ~Λ, t) ∈ Σb

a for all t ≥ 0. Then the following min-max value

C(Ω) = inf
t≥0

sup
(~ξ,σ)∈S×I0

I
(
η(κ(~ξ, σ, 1), t)

)
is a critical value for I. We are always assuming that ε is small enough, to
make the errors in (4.1) sufficiently small. Theorem 1.1 has been proven. �
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